1-5 of 5 Results  for:

Clear all

Article

David Proverbs and Jessica Lamond

Flood resilient construction has become an essential component of the integrated approach to flood risk management, now widely accepted through the concepts of making space for water and living with floods. Resilient construction has been in place for centuries, but only fairly recently has it been recognized as part of this wider strategy to manage flood risk. Buildings and the wider built environment are known to play a key role in flood risk management, and when buildings are constructed on or near to flood plains there is an obvious need to protect these. Engineered flood defense systems date back centuries, with early examples seen in China and Egypt. Levees were first built in the United States some 150 years ago, and were followed by the development of flood control acts and regulations. In 1945, Gilbert Fowler White, the so-called “father of floodplain management,” published his influential thesis which criticized the reliance on engineered flood defenses and began to change these approaches. In Europe, a shortage of farmable land led to the use of land reclamation schemes and the ensuing Land Drainage acts before massive flood events in the mid-20th century led to a shift in thinking towards the engineered defense schemes such as the Thames Barrier and Dutch dyke systems. The early 21st century witnessed the emergence of the “living with water” philosophy, which has resulted in the renewed understanding of flood resilience at a property level. The scientific study of construction methods and building technologies that are robust to flooding is a fairly recent phenomenon. There are a number of underlying reasons for this, but the change in flood risk philosophy coupled with the experience of flood events and the long process of recovery is helping to drive research and investment in this area. This has led to a more sophisticated understanding of the approaches to avoiding damage at an individual property level, categorized under three strategies, namely avoidance technology, water exclusion technology, and water entry technology. As interest and policy has shifted to water entry approaches, alongside this has been the development of research into flood resilient materials and repair and reinstatement processes, the latter gaining much attention in the recognition that experience will prompt resilient responses and that the point of reinstatement provides a good opportunity to install resilient measures. State-of-the-art practices now center on avoidance strategies incorporating planning legislation in many regions to prohibit or restrict new development in flood plains. Where development pressures mean that new buildings are permitted, there is now a body of knowledge around the impact of flooding on buildings and flood resilient construction and techniques. However, due to the variety and complexity of architecture and construction styles and varying flood risk exposure, there remain many gaps in our understanding, leading to the use of trial and error and other pragmatic approaches. Some examples of avoidance strategies include the use of earthworks, floating houses, and raised construction. The concept of property level flood resilience is an emerging concept in the United Kingdom and recognizes that in some cases a hybrid approach might be favored in which the amount of water entering a property is limited, together with the likely damage that is caused. The technology and understanding is moving forward with a greater appreciation of the benefits from combining strategies and property level measures, incorporating water resistant and resilient materials. The process of resilient repair and considerate reinstatement is another emerging feature, recognizing that there will be a need to dry, clean, and repair flood-affected buildings. The importance of effective and timely drying of properties, including the need to use materials that dry rapidly and are easy to decontaminate, has become more apparent and is gaining attention. Future developments are likely to concentrate on promoting the uptake of flood resilient materials and technologies both in the construction of new and in the retrofit and adaptation of existing properties. Further development of flood resilience technology that enhances the aesthetic appeal of adapted property would support the uptake of measures. Developments that reduce cost or that offer other aesthetic or functional advantages may also reduce the barriers to uptake. A greater understanding of performance standards for resilient materials will help provide confidence in such measures and support uptake, while further research around the breathability of materials and concerns around mold and the need to avoid creating moisture issues inside properties represent some of the key areas.

Article

Glacier retreat is considered to be one of the most obvious manifestations of recent and ongoing climate change in the majority of glacierized alpine and high-latitude regions throughout the world. Glacier retreat itself is both directly and indirectly connected to the various interrelated geomorphological/hydrological processes and changes in hydrological regimes. Various types of slope movements and the formation and evolution of lakes are observed in recently deglaciated areas. These are most commonly glacial lakes (ice-dammed, bedrock-dammed, or moraine-dammed lakes). “Glacial lake outburst flood” (GLOF) is a phrase used to describe a sudden release of a significant amount of water retained in a glacial lake, irrespective of the cause. GLOFs are characterized by extreme peak discharges, often several times in excess of the maximum discharges of hydrometeorologically induced floods, with an exceptional erosion/transport potential; therefore, they can turn into flow-type movements (e.g., GLOF-induced debris flows). Some of the Late Pleistocene lake outburst floods are ranked among the largest reconstructed floods, with peak discharges of up to 107 m3/s and significant continental-scale geomorphic impacts. They are also considered capable of influencing global climate by releasing extremely high amounts of cold freshwater into the ocean. Lake outburst floods associated with recent (i.e., post-Little Ice Age) glacier retreat have become a widely studied topic from the perspective of the hazards and risks they pose to human society, and the possibility that they are driven by anthropogenic climate change. Despite apparent regional differences in triggers (causes) and subsequent mechanisms of lake outburst floods, rapid slope movement into lakes, producing displacement waves leading to dam overtopping and eventually dam failure, is documented most frequently, being directly (ice avalanche) and indirectly (slope movement in recently deglaciated areas) related to glacial activity and glacier retreat. Glacier retreat and the occurrence of GLOFs are, therefore, closely tied, because glacier retreat is connected to: (a) the formation of new, and the evolution of existing, lakes; and (b) triggers of lake outburst floods (slope movements).

Article

Russ S. Schumacher

Heavy precipitation, which in many contexts is welcomed because it provides the water necessary for agriculture and human use, in other situations is responsible for deadly and destructive flash flooding. Over the 30-year period from 1986 to 2015, floods were responsible for more fatalities in the United States than any other convective weather hazard (www.nws.noaa.gov/om/hazstats.shtml), and similar findings are true in other regions of the world. Although scientific understanding of the processes responsible for heavy rainfall continues to advance, there are still many challenges associated with predicting where, when, and how much precipitation will occur. Common ingredients are required for heavy rainfall to occur, but there are vastly different ways in which the atmosphere brings the ingredients together in different parts of the world. Heavy precipitation often occurs on very small spatial scales in association with deep convection (thunderstorms), factors that limit the ability of numerical models to represent or predict the location and intensity of rainfall. Furthermore, because flash floods are dependent not only on precipitation but also on the characteristics of the underlying land surface, there are fundamental difficulties in accurately representing these coupled processes. Areas of active current research on heavy rainfall and flash flooding include investigating the storm-scale atmospheric processes that promote extreme precipitation, analyzing the reasons that some rainfall predictions are very accurate while others fail, improving the understanding and prediction of the flooding response to heavy precipitation, and determining how heavy rainfall and floods have changed and may continue to change in a changing climate.

Article

Parvin Sultana and Paul Thompson

Floodplains are ecologically diverse and important sources of livelihood for rural people. Bangladesh is one of the most floodplain-dominated countries and supports the highest density of rural population in the world. The experience of Bangladesh in floodplain management efforts provides evidence, lessons, and insights on a range of debates and advances in the management of floodplain natural resources, the challenges of climate change, and the role of local communities in sustaining these resources and thereby their livelihoods. Although floodplain areas are primarily used for agriculture, the significance and value of wild common natural resources—mainly fish and aquatic plants—as sources of income and nutrition for floodplain inhabitants has been underrecognized in the past, particularly with respect to poorer households. For example, capture fisheries—a common resource—have been adversely impacted by the building of embankments and sluice gates and by the conversion of floodplains into aquaculture farms, which also exclude poor subsistence users from wetland resources. More generally, an overreliance on engineering “solutions” to flooding that focused on enabling more secure rice cultivation was criticized, particularly in the early 1990s during the Flood Action Plan, for being top down and for ignoring some of the most vulnerable people who live on islands in the braided main rivers. Coastal embankments have also been found to have longer term environmental impacts that undermine their performance because they constrain rivers, which silt up outside these polders, contributing, along with land shrinkage, to drainage congestion. Locals responded in an innovative way by breaking embankments to allow flood water and silt deposition in to regain relative land levels. Since the early 1990s Bangladesh has adopted a more participatory approach to floodplain management, piloting and then expanding new approaches; these have provided lessons that can be more general applied within Asia and beyond. Participatory planning for water and natural resource management has also been adopted at the local level. Good practices have been developed to ensure that disadvantaged, poor stakeholders can articulate their views and find consensus with other local stakeholders. The management of smaller water-control projects (up to 1,000 ha) has been taken on by community organizations, and in larger water-control projects, there is collaborative management (also called “co-management”) among a hierarchy of groups and associations and the appropriate government agency. In fishery and wetland management, many areas have been managed by community organizations to sustainably restore common resources, although their rights to do this were lost in some cases. Associated with community management are successful experiments in adopting a more system-based approach, called “integrated floodplain management,” which balances the needs of agriculture and common natural resources, for example, by adopting crops with lower water demands that are resilient to less predictable rainfall and drier winters, and enable communities to preserve surface water for wild aquatic resources. Bangladesh also has had success in demonstrating the benefits of systematic learning among networks of community organizations, which enhances innovation and adaptation to the ever-changing environmental challenges in floodplains.

Article

Philip Bubeck, Antje Otto, and Juergen Weichselgartner

Floods remain the most devastating natural hazard globally, despite substantial investments in flood prevention and management in recent decades. Fluvial floods, such as the ones in Pakistan in 2010 and Thailand in 2011, can affect entire countries and cause severe economic and human losses. Also, coastal floods can inflict substantial harm owing to their destructive forces in terms of wave and tidal energy. A flood type that received growing attention in recent years is flooding from pluvial events (heavy rainfall). Even though these are locally confined, their sudden onset and unpredictability pose a danger to areas that are generally not at risk from flooding. In the future, it is projected that flood risk will increase in many regions both because of the effects of global warming on the hydrological cycle and the continuing concentration of people and economic assets in risk-prone areas. Floods have a large variety of societal impacts that span across space and time. While some of these impacts are obvious and have been well researched, others are more subtle and less is known about their complex processes and long-term effects. The most immediate and apparent impact of floods is direct damage caused by physical contact between floodwaters and economic assets, cultural heritage, or human beings, with the result for humans being injuries and deaths. Direct flood damage can amount to billions of US dollars for single events, such as the floods in the Danube and Elbe catchment in Central Europe in 2002 and 2013. More indirect economic implications are the losses that occur outside of the flood event in space and time, such as losses due to business disruption. The flood in Thailand in 2011, for instance, resulted in a lack of auto parts supplies and consequently the shutdown of car manufacturing within and outside the flood zone. Floods also have long-term indirect impacts on flood-affected people and communities. Experiencing property damage and losing important personal belongings can have a negative psychological effect on flood victims. Much less is known about this type of flood impact: how long do these impacts last? What makes some people or communities recover faster than others from financial losses and emotional stress? Moreover, flood impacts are not equally distributed across different groups of society. Often, poor, elderly, and marginalized societal groups are particularly vulnerable to the effects of flooding inasmuch as these groups generally have little social, human, and financial coping capacities. In many countries, women regularly bear a disproportionately high burden because of their societal status. Finally, severe floods often provide so-called windows of opportunities, enabling rapid policy change, resulting in new flood risk management policies. Such newly adopted policy arrangements can lead to societal conflicts over issues of interests, equity, and fairness. For instance, flood events often trigger large-scale investment in flood defense infrastructure, which are associated with high construction costs. Although these costs are usually borne by the taxpayer, often only a small proportion of society shares in their benefits. In addition, societal conflict can arise concerning where to build structural measures; what impacts these measures have on the ground regarding economic development potentials, different kinds of uses, and nature protection; and which effects are expected downstream. In such controversies, issues of participation and decision making are central and often highly contested. While floods are usually associated with negative societal impacts in industrialized countries, they also have beneficial impacts on nature and society. In many parts of the world, the livelihood of millions of people depends on the recurring occurrence of flooding. For instance, farming communities in or near floodplains rely upon regular floodwaters that carry nutrients and sediments, enriching the soil and making it fertile for cultivation.