1-2 of 2 Results  for:

Clear all

Article

Emergency and disaster planning involves a coordinated, co-operative process of preparing to match urgent needs with available resources. The phases are research, writing, dissemination, testing, and updating. Hence, an emergency plan needs to be a living document that is periodically adapted to changing circumstances and that provides a guide to the protocols, procedures, and division of responsibilities in emergency response. Emergency planning is an exploratory process that provides generic procedures for managing unforeseen impacts and should use carefully constructed scenarios to anticipate the needs that will be generated by foreseeable hazards when they strike. Plans need to be developed for specific sectors, such as education, health, industry, and commerce. They also need to exist in a nested hierarchy that extends from the local emergency response (the most fundamental level), through the regional tiers of government, to the national and international levels. Failure to plan can be construed as negligence because it would involve failing to anticipate needs that cannot be responded to adequately by improvisation during an emergency. Plans are needed, not only for responding to the impacts of disaster, but also to maintain business continuity while managing the crisis, and to guide recovery and reconstruction effectively. Dealing with disaster is a social process that requires public support for planning initiatives and participation by a wide variety of responders, technical experts and citizens. It needs to be sustainable in the light of challenges posed by non-renewable resource utilization, climate change, population growth, and imbalances of wealth. Although, at its most basic level, emergency planning is little more than codified common sense, the increasing complexity of modern disasters has required substantial professionalization of the field. This is especially true in light of the increasing role in emergency response of information and communications technology. Disaster planners and coordinators are resource managers, and in the future, they will need to cope with complex and sophisticated transfers of human and material resources. In a globalizing world that is subject to accelerating physical, social, and economic change, the challenge of managing emergencies well depends on effective planning and foresight, and the ability to connect disparate elements of the emergency response into coherent strategies.

Article

David Proverbs and Jessica Lamond

Flood resilient construction has become an essential component of the integrated approach to flood risk management, now widely accepted through the concepts of making space for water and living with floods. Resilient construction has been in place for centuries, but only fairly recently has it been recognized as part of this wider strategy to manage flood risk. Buildings and the wider built environment are known to play a key role in flood risk management, and when buildings are constructed on or near to flood plains there is an obvious need to protect these. Engineered flood defense systems date back centuries, with early examples seen in China and Egypt. Levees were first built in the United States some 150 years ago, and were followed by the development of flood control acts and regulations. In 1945, Gilbert Fowler White, the so-called “father of floodplain management,” published his influential thesis which criticized the reliance on engineered flood defenses and began to change these approaches. In Europe, a shortage of farmable land led to the use of land reclamation schemes and the ensuing Land Drainage acts before massive flood events in the mid-20th century led to a shift in thinking towards the engineered defense schemes such as the Thames Barrier and Dutch dyke systems. The early 21st century witnessed the emergence of the “living with water” philosophy, which has resulted in the renewed understanding of flood resilience at a property level. The scientific study of construction methods and building technologies that are robust to flooding is a fairly recent phenomenon. There are a number of underlying reasons for this, but the change in flood risk philosophy coupled with the experience of flood events and the long process of recovery is helping to drive research and investment in this area. This has led to a more sophisticated understanding of the approaches to avoiding damage at an individual property level, categorized under three strategies, namely avoidance technology, water exclusion technology, and water entry technology. As interest and policy has shifted to water entry approaches, alongside this has been the development of research into flood resilient materials and repair and reinstatement processes, the latter gaining much attention in the recognition that experience will prompt resilient responses and that the point of reinstatement provides a good opportunity to install resilient measures. State-of-the-art practices now center on avoidance strategies incorporating planning legislation in many regions to prohibit or restrict new development in flood plains. Where development pressures mean that new buildings are permitted, there is now a body of knowledge around the impact of flooding on buildings and flood resilient construction and techniques. However, due to the variety and complexity of architecture and construction styles and varying flood risk exposure, there remain many gaps in our understanding, leading to the use of trial and error and other pragmatic approaches. Some examples of avoidance strategies include the use of earthworks, floating houses, and raised construction. The concept of property level flood resilience is an emerging concept in the United Kingdom and recognizes that in some cases a hybrid approach might be favored in which the amount of water entering a property is limited, together with the likely damage that is caused. The technology and understanding is moving forward with a greater appreciation of the benefits from combining strategies and property level measures, incorporating water resistant and resilient materials. The process of resilient repair and considerate reinstatement is another emerging feature, recognizing that there will be a need to dry, clean, and repair flood-affected buildings. The importance of effective and timely drying of properties, including the need to use materials that dry rapidly and are easy to decontaminate, has become more apparent and is gaining attention. Future developments are likely to concentrate on promoting the uptake of flood resilient materials and technologies both in the construction of new and in the retrofit and adaptation of existing properties. Further development of flood resilience technology that enhances the aesthetic appeal of adapted property would support the uptake of measures. Developments that reduce cost or that offer other aesthetic or functional advantages may also reduce the barriers to uptake. A greater understanding of performance standards for resilient materials will help provide confidence in such measures and support uptake, while further research around the breathability of materials and concerns around mold and the need to avoid creating moisture issues inside properties represent some of the key areas.