Populations that are rendered socially invisible by their relegation to realms that are excluded—either physically or experientially—from the rest of society tend to similarly be left out of community disaster planning, often with dire consequences. Older adults, persons with disabilities, linguistic minorities, and other socially marginalized groups face amplified risks that translate into disproportionately negative outcomes when disasters strike. Moreover, these disparities are often reproduced in the aftermath of disasters, further reinforcing preexisting inequities. Even well-intentioned approaches to disaster service delivery have historically homogenized and segregated distinct populations under the generic moniker of “special needs,” thereby undermining their own effectiveness at serving those in need.
The access and functional needs perspective has been promoted within the emergency management field as a practical and inclusive means of accommodating a range of functional capacities in disaster planning. This framework calls for operationalizing needs into specific mechanisms of functional support that can be applied at each stage of the disaster lifecycle. Additionally, experts have emphasized the need to engage advocacy groups, organizations that routinely serve socially marginalized populations, and persons with activity limitations themselves to identify support needs. Incorporating these diverse entities into the planning process can help to build stronger, more resilient communities.
81-100 of 212 Results
Article
Integrating Access and Functional Needs in Community Planning for Natural Hazards
Nnenia Campbell
Article
Inter-Agency Collaboration for Natural Hazard Management in Developed Countries
Nibedita Ray-Bennett, Daniel Mendez, Edris Alam, and Christian Morgner
Although the concept of natural hazard management as the central institutional mode of governance for coping with disasters appeared in the 1970s, inter-agency collaboration in natural hazard management came to the fore with the declaration of the United Nations (UN) Yokohama Strategy in 1994. The Yokohama Strategy focused on collaboration amongst international and regional organizations, donors, early-warning systems, the scientific community and national emergency agencies, among others. The successors of the strategy, the Hyogo Framework for Action launched in 2005, and the Sendai Framework for Disaster Risk Reduction in 2015, continue to emphasize the same. Inter-agency collaboration in governing hazard management is a collective effort, and these efforts have been promoted through cooperation, communication, and effective decision making between actors and organizations, enabled by enhanced technology. The content of the UN’s Yokohama Strategy, Hyogo Framework, Sendai Framework, and the cluster system bear this out. However, more research is required to understand the extent to which national governments have translated the UN’s frameworks into action. Studying how governments and responders coordinate and cooperate and what they coordinate, cooperate on, and communicate will clarify the realized processes that underpin hazard management.
Article
Intersectionality as a Forward-Thinking Approach in Disaster Research
Cassandra Jean, Tilly E. Hall, and Jamie Vickery
Disaster researchers, policymakers, and practitioners are confronted with the pressing need to understand and address how and why certain individuals and groups of individuals experience inequities leading up to, during, and postdisaster. These efforts must consider how to address such inequities through collaborative efforts toward intentional and systemic change. The use of intersectional approaches supports better analyze and critique of discriminatory and oppressive practices that disproportionately impact historically marginalized peoples, especially in the face of hazards and disasters. Intersectionality calls for understanding how different forms of privilege, power, and oppression interact and compound to create unequal socioeconomic outcomes across individuals and groups of individuals based on their identities (e.g., age, race, sexuality, and gender) and conditions (e.g., housing composition, immigration, and marital status). A review of inter- and multidisciplinary terrains of disaster studies shows that there are multifaceted utilities, capabilities, and advantages of adopting an intersectional approach. By considering historical discriminatory practices and the root causes of vulnerability, intersectionality highlights the systemic and institutionalized patterns that create precarious situations for some people while simultaneously protecting others. Intersectionality is also well suited to support insight into individuals’ capacities that affect their ability to prepare for, respond to, and recover from disastrous events, as well as assist them in avoiding or reducing risks that make them susceptible to disaster in the first place. However, intersectional approaches within disaster studies remain underutilized and, sometimes, superficially applied. Simplistic representations, the unequal attention given to certain intersections, and the domination of Western epistemologies must be attended to in order to challenge, disrupt, and diligently undo the interactions of systematic privilege, power, and oppression that render unequal disaster experiences and outcomes.
Article
Introduction to Socio-Ecological Resilience
Vincenzo Bollettino, Tilly Alcayna, Philip Dy, and Patrick Vinck
In recent years, the notion of resilience has grown into an important concept for both scholars and practitioners working on disasters. This evolution reflects a growing interest from diverse disciplines in a holistic understanding of complex systems, including how societies interact with their environment. This new lens offers an opportunity to focus on communities’ ability to prepare for and adapt to the challenges posed by natural hazards, and the mechanism they have developed to cope and adapt to threats. This is important because repeated stresses and shocks still cause serious damages to communities across the world, despite efforts to better prepare for disasters.
Scholars from a variety of disciplines have developed resilience frameworks both to guide macro-level policy decisions about where to invest in preparedness and to measure which systems perform best in limiting losses from disasters and ensuring rapid recovery. Yet there are competing conceptions of what resilience encompasses and how best to measure it. While there is a significant amount of scholarship produced on resilience, the lack of a shared understanding of its conceptual boundaries and means of measurement make it difficult to demonstrate the results or impact of resilience programs.
If resilience is to emerge as a concept capable of aiding decision-makers in identifying socio-geographical areas of vulnerability and improving preparedness, then scholars and practitioners need to adopt a common lexicon on the different elements of the concept and harmonize understandings of the relationships amongst them and means of measuring them. This article reviews the origins and evolution of resilience as an interdisciplinary, conceptual umbrella term for efforts by different disciplines to tackle complex problems arising from more frequent natural disasters. It concludes that resilience is a useful concept for bridging different academic disciplines focused on this complex problem set, while acknowledging that specific measures of resilience will differ as different units and levels of analysis are employed to measure disparate research questions.
Article
Involving People in Informal Settlements in Natural Hazards Governance Based on South African Experience
Catherine Sutherland
Natural hazard governance in countries in the Global South is shifting from a state-centered approach, which has predominantly focused on disaster risk management, with limited involvement of citizens, and a disaster response to a hazard event, to an approach which is more participatory, inclusive and proactive. This emerging approach aims to be transformative, as it draws on the knowledge and skills of multiple actors, including community members; focuses on risk reduction and adaptation; and builds new models of participatory risk governance at the local and city scale.
Progressive legislation has played a major role in supporting this evolution toward a more transformative approach to natural hazard governance, which recognizes the political economy and political ecology of risk. This includes acknowledging the vulnerability of communities in particular contexts, and the need to address development deficits to build resilience in the face of natural hazards. However, a significant gap exists between progressive legislation and policy, and implementation. Informal settlements experience some of the worst impacts of natural hazards due to their exposure, vulnerability, and social and political marginalization. However, they are also resilient and adaptive, developing innovative approaches in partnership with the state and other actors, to plan for and respond to natural hazards. Empirical research on particular case studies where these shifts in governance are evident, is necessary to explore the opportunities for and barriers to transformative, participatory natural hazard governance in cities in the South.
Article
Lessons on Risk Governance From the UNISDR Experience
Sálvano Briceño
In the context of this article, risk governance addresses the ways and means—or institutional framework—to lead and manage the issue of risk related to natural phenomena, events, or hazards, also referred to popularly, although incorrectly, as “natural disasters.” At the present time, risk related to natural phenomena includes a major focus on the issue of climate change with which it is intimately connected, climate change being a major source of risk.
To lead involves mainly defining policies and proposing legislation, hence proposing goals, conducting, promoting, orienting, providing a vision—namely, reducing the loss of lives and livelihoods as part of sustainable development—also, raising awareness and educating on the topic and addressing the ethical perspective that motivates and facilitates engagement by citizens.
To manage involves, among other things, proposing organizational and technical arrangements, as well as regulations allowing the implementation of policies and legislation. Also, it involves monitoring and supervising such implementation to draw further lessons to periodically enhance the policies, legislation, regulations, and organizational and technical arrangements.
UNISDR (now known as UNDRR) was established in 2000 to promote and facilitate risk reduction, becoming in a few years one of the main promoters of risk governance in the world and the main global advocate from within the United Nations system. It was an honor to serve as the first director of the UNISDR (2001–2011).
A first lesson to be drawn from this experience was the need to identify, understand, and address the obstacles not allowing the implementation of what seems to be obvious to the scientific community but of difficult implementation by governments, private sector, and civil society; and alternatively, the reasons for shortcomings and weaknesses in risk governance.
A second lesson identified was that risk related to natural phenomena also provides lessons for governance related to other types of risk in society—environmental, financial, health, security, and so on, each a separate and specialized topic, sharing, however, common risk governance approaches.
A third lesson was the relevance of understanding leadership and management as essential components in governance. Drawing lessons on one’s own experience is always risky as it involves some subjectivity in the analysis. In the article, the aim has, nonetheless, been at the utmost objectivity on the essential learnings in having conducted the United Nations International Strategy for Disaster Reduction—UNISDR—from 2001 to around 2009 when leading and managing was shared with another manager, as I prepared for retirement in 2011.
Additional lessons are identified, including those related to risk governance as it is academically conceived, hence, what risk governance includes and how it has been implemented by different international, regional, national, and local authorities. Secondly, I identify those lessons related to the experience of leading and managing an organization focused on disaster risk at the international level and in the context of the United Nations system.
Article
Linking Hazard Vulnerability, Risk Reduction, and Adaptation
Jörn Birkmann and Joanna M. McMillan
The concepts of vulnerability, disaster risk reduction and climate change adaptation are interlinked. Risk reduction requires a focus not just on the hazards themselves or on the people and structures exposed to hazards but on the vulnerability of those exposed. Vulnerability helps with the identification of root causes that make people or structures susceptible to being affected by natural and climate-related hazards. It is therefore an essential component of reducing risk of disasters and of adapting to climate change.
The need to better assess and acknowledge vulnerability has been recognized by several communities of thought and practice, including the Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) communities. The concept of vulnerability was introduced during the 1980s as a way to better understand the differential consequences of similar hazard events and differential impacts of climate change on different societies or social groups and physical structures. Since then, the concept gradually became an integral part of discourses around disaster risk reduction and climate change adaptation. Although the history of the emergence of vulnerability concepts and the different perspectives of these communities mean the way they frame vulnerability differs, the academic discourse has reached wide agreement that risk—and actual harm and losses—are not just caused by physical events apparently out of human control but primarily by what is exposed and vulnerable to those events.
In the international policy arena, vulnerability, risk, and adaptation concepts are now integrated into the global agenda on sustainable development, disaster risk reduction, and climate change. In the context of international development projects and financial aid, the terms and concepts are increasingly used and applied. However, there is still too little focus on addressing underlying vulnerabilities.
Article
Linking Risk Reduction and Community Resilience
Hyunjung Ji
Risk reduction is a policy priority in governments at all levels. Building community resilience is one of the keys to reducing disaster risks. Resilience-focused risk reduction considers the wider social, political, and cultural environments of a community and emphasizes the importance of working with community members. This is in stark contrast to the previous vulnerability-focused risk management that treats disasters as unavoidable natural events and recognizes people as passive or helpless under the unavoidable disasters.
Community resilience is a critical concept in identifying visions and directions for risk reduction strategies. Community resilience has two major qualities: inherent community conditions (inherent resilience) and the community’s adaptive capacity (adaptive resilience). There are at least four components that should be included in risk reduction strategies to enhance both inherent and adaptive community resilience: risk governance, community-based risk reduction policies, non-governmental disaster entrepreneurs, and people-centered risk reduction measures.
Risk governance is required to bridge the gap between national policies and local practices, scientific knowledge of natural hazards and locally accumulated knowledge, and national assistance and local actions. Community-based risk reduction policies should complement national disaster policies to reflect locally specific patterns of hazard, exposure, and resilience that are otherwise ignored in policy design process at the international and national levels. Risk reduction strategies should also encourage emergence of non-governmental entrepreneurs who can contribute to the speed and success of community relief and recovery following a disaster by resolving the immediate needs of the affected communities and transitioning people toward autonomy and self-reliance. Finally, risk reduction strategies should include people-centered policy measures that are designed to change the awareness, attitudes, and behaviors of people so that they are more prepared when facing a disaster.
Article
Livelihoods in Bangladesh Floodplains
Parvin Sultana and Paul Thompson
Floodplains are ecologically diverse and important sources of livelihood for rural people. Bangladesh is one of the most floodplain-dominated countries and supports the highest density of rural population in the world. The experience of Bangladesh in floodplain management efforts provides evidence, lessons, and insights on a range of debates and advances in the management of floodplain natural resources, the challenges of climate change, and the role of local communities in sustaining these resources and thereby their livelihoods. Although floodplain areas are primarily used for agriculture, the significance and value of wild common natural resources—mainly fish and aquatic plants—as sources of income and nutrition for floodplain inhabitants has been underrecognized in the past, particularly with respect to poorer households. For example, capture fisheries—a common resource—have been adversely impacted by the building of embankments and sluice gates and by the conversion of floodplains into aquaculture farms, which also exclude poor subsistence users from wetland resources. More generally, an overreliance on engineering “solutions” to flooding that focused on enabling more secure rice cultivation was criticized, particularly in the early 1990s during the Flood Action Plan, for being top down and for ignoring some of the most vulnerable people who live on islands in the braided main rivers. Coastal embankments have also been found to have longer term environmental impacts that undermine their performance because they constrain rivers, which silt up outside these polders, contributing, along with land shrinkage, to drainage congestion. Locals responded in an innovative way by breaking embankments to allow flood water and silt deposition in to regain relative land levels.
Since the early 1990s Bangladesh has adopted a more participatory approach to floodplain management, piloting and then expanding new approaches; these have provided lessons that can be more general applied within Asia and beyond. Participatory planning for water and natural resource management has also been adopted at the local level. Good practices have been developed to ensure that disadvantaged, poor stakeholders can articulate their views and find consensus with other local stakeholders. The management of smaller water-control projects (up to 1,000 ha) has been taken on by community organizations, and in larger water-control projects, there is collaborative management (also called “co-management”) among a hierarchy of groups and associations and the appropriate government agency. In fishery and wetland management, many areas have been managed by community organizations to sustainably restore common resources, although their rights to do this were lost in some cases. Associated with community management are successful experiments in adopting a more system-based approach, called “integrated floodplain management,” which balances the needs of agriculture and common natural resources, for example, by adopting crops with lower water demands that are resilient to less predictable rainfall and drier winters, and enable communities to preserve surface water for wild aquatic resources. Bangladesh also has had success in demonstrating the benefits of systematic learning among networks of community organizations, which enhances innovation and adaptation to the ever-changing environmental challenges in floodplains.
Article
Looking for the Disaster Behind an Earthquake in a Fishing Village in South Pacific Coast of Mexico
Rogelio Josue Ramos Torres
One of the central premises within the social construction of risk and disasters perspectives is that the latter are something different from the natural events or manifestations to which they usually are associated. From some theoretical proposals, it has been said that the notion of disaster can vary greatly from one society to another, in such a way that what is disastrous in one place is not in another. One way to separate the disaster from the natural event is to read it from the local realities and frameworks of meaning in which it is suffered, where the relationship and intersections between the social and the natural are essential.
On the other hand, to track a disaster can be done based on the way in which people historically perceive risk in their own context and how it is represented, in both daily life and critical moments. There, in these representations, aspects related to the problems or threats that affect their life, their environment, but also their group and social identity are usually reflected.
Bahía de Paredón is a fishing town in the southern Mexican Pacific that was hit by a major earthquake in September 2017, which caused serious damage and losses but, at the same time, also opened a “critical window” to observe, in this case through the social representations that emerged, the historical threats and vulnerabilities that society suffers the most. After recounting the material repercussions of the earthquake and confronting them with the fishermen’s testimonies, it is possible to understand, in a manner consistent with local history, what kinds of risks are perceived and the meaning of the representations at that juncture. These are both useful leads to know where and what the disaster is for that specific group of people.
Since it is a community with a strong presence of different churches, among Bahía de Paredón inhabitants, risk perceptions and their respective representations are both mediated by a religious dimension. Here, religion operates as a historical explanatory platform to face the mysteries or dangers that working at sea implied, but its influence also shapes social representations around those same dangers. This religious reaction was also clearly seen at the most critical moments during and after the earthquake, when many people appealed mainly to their own church looking for shelter and spiritual relief.
In the earthquake context, some of the risk perceptions related to material damages appeared as the continuity of older problems, affecting significantly local activities of daily life. But in social representations, the resignified use of certain elements or factors also appears as a source where fishermen find valuable forces to resist both those old problems and the critical moments caused by the earthquake.
In a broad view, water, whose problems are closely related to the deterioration process of the surrounding rivers and the sea where the fishermen work, presented as a major concern among the inhabitants of the bay. But it is also the water, in this case specifically the sea, where the old fishermen find the symbolic strength to face threats the size of an earthquake. Taking into account the history of the bay and the problems fishermen suffer, the representation of risk, in this case, can be interpreted as an emotional or a psychological mechanism to face the inexplicable but also, in a more complex reading, as a gesture of resistance against the processes that deplete or destroy the wealth or natural elements where fishermen used to find safety and whose recovery they claim from the symbolic level.
Article
Managed Retreat in Practice: Mechanisms and Challenges for Implementation
Christina Hanna, Iain White, and Bruce Glavovic
Managed retreat is a deliberate strategy to remedy unsustainable land use patterns that expose people, ecosystems, and assets to significant natural (and socio-natural) hazard and climate induced risks. The term is all-encompassing, broadly capturing planned relocation in the fields of disaster risk reduction and climate change adaptation, as well as managed retreat or realignment in coastal management and environmental planning practice. Managed retreat helps to ensure that people and the resources they value are no longer exposed to extreme events and to the adverse impacts of slow-onset environmental change.
Distinct from migration and displacement, managed retreat is the strategically planned withdrawal from development in risky spaces. It can be applied at a range of spatial scales, in an anticipatory, staged, or reactive manner. Unlike traditional risk management alternatives, managed retreat affords space to natural processes and minimizes long-term maintenance and emergency management costs. While it has great promise as a sustainable disaster risk reduction and climate change adaptation strategy, there are a number of socio-political-cultural, environmental, economic, and institutional barriers affecting its implementation, particularly in contexts with extensive existing development. There may also be significant challenges in integrating relocated and receiving communities. In practice, people are deeply connected to, and reliant upon, the security, networks and cultural values of their lands, homes, communities, and livelihoods. To realize the long-term benefits, managed retreat needs to be considered as an integrated approach that uses information, regulation, and various financial levers in a strategic manner, and recognizes the need to work alongside communities in a fair, transparent, and inclusive way.
Article
Managing Vulnerability During Cascading Disasters: Language Access Services
Federico Marco Federici
Communication underpins all phases of disaster risk reduction: it is at the heart of risk mitigation, by increasing resilience and preparedness, and by interacting with affected communities in the response phase and throughout the reconstruction and recovery after a disaster. Communication does not alter the scope or severity of a disaster triggered by natural hazards, but the extent to which risk reduction strategies impact on affected regions depends greatly on existing differences inherent in the society of these regions. Ethnic minorities and multilingual language groups―which are not always one and the same―may become vulnerable groups when there has been little or no planning or no awareness of the impact of limited access to trustworthy information when the disaster strikes.
Furthermore, large-scale disasters are likely to involve personnel from the humanitarian sector from both local and international offices. Communication in most large-scale events has progressively become multilingual; from the late 20th and early 21st centuries, it is expected that large disasters see collaboration between intergovernmental, governmental, local, national, and international entities that operate in different ways in rescue and relief operations. Regardless of linguistic contexts, communication of reliable information in a trustworthy manner is complex to achieve in the aftermath of a disaster, which may instantaneously affect telecommunication infrastructures (overloading VOIP and GPS systems). From coordination to information, clear communication plays a role in any activity intending to reduce risks, damages, morbidity, and mortality. Achieving clear communication in crisis management is a feat in a monolingual context: people from different organizations and with different capacities in multi-agency operations have at least a common language, nonetheless, terminology varies from one organization to another, thus hampering successful communication. Achieving effective and clear communication with multilingual communities, while using one language (or lingua franca), such as English, Arabic, Spanish, or Hindi, depending on the region, is impossible without due consideration to language translation.
Article
Masculinities and Disaster
Scott McKinnon
Gender plays a role in all phases of the disaster cycle, from the lived experience of disaster survivors to the development of disaster risk reduction (DRR) policy and practice. Early research into the entanglement of gender and disaster revealed how women are made more vulnerable to disaster impacts by sexist and misogynist social structures. Researchers have since identified women’s central roles in building disaster resilience and aiding community recovery. Feminist scholarship has been highly influential in disasters research, prompting consideration of how intersecting social characteristics, including gender, sexuality, race, class, and bodily ability each contributes to the social construction of disaster.
Drawing on work in the field of critical men’s studies, a small but growing body of research has engaged with the role of gender in men’s disaster experiences, as well as how hegemonic masculinity shapes emergency management practice, constructs widely understood disaster narratives, and influences the development of DRR policy, including policies related to the crisis of climate change. Rather than a fixed identity, hegemonic masculinity operates as a culturally dominant ideal to which men and boys are expected to strive. It is spatially constituted and relational, often defined by attributes including physical strength, bravery, and confidence.
To date, the most substantial focus of research into masculinity and disasters relates to the lived and bodily experience of men impacted by wildfire. Australian researchers in particular have identified ways in which hegemonic ideals increase the disaster vulnerability of men, who feel pressure to act with bravery and to exhibit emotional and physical strength in conditions of extreme danger. Expectations of stoicism and courage equally impact men’s recovery from disaster, potentially limiting opportunities to access necessary support systems, particularly in relation to mental health and emotional well-being.
Hegemonic masculine ideals similarly impact the experiences of frontline emergency workers. Emergency management workplaces are often constructed as masculine spaces, encouraging high-risk behaviors by male workers, and limiting opportunities for participation by people of other genders. Male dominance in the leadership of emergency management organizations also impacts policy and practice, including in the distribution of resources and in attentiveness to the role of gender in the disaster experiences of many survivors.
Dominant disaster narratives, as seen in movies and the news media, contribute to the idea that disaster landscapes are ideal places for the performance of hegemonic masculine identities. Male voices dominate in media reporting of disasters, often leaving invisible the experiences of other people, with consequences for how disasters are understood by the wider public. Common tropes in Hollywood cinema similarly depict disasters as masculine events, in which brave cisgender men protect vulnerable cisgender women, with people of other genders entirely invisible.
Identifying and addressing the role of masculinities in disaster is increasingly important within the crisis of global heating. As climate change increases the frequency and intensity of disasters, new ways of engaging with the environment and constructing DRR policy has become more urgent. Research in this field offers a critical baseline by which to move beyond binary gender definitions and to address damaging masculine ideals that ultimately harm the environment and people of all genders.
Article
Measuring Flood Discharge
Marian Muste and Ton Hoitink
With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams.
Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.
Article
The Media and Early Warning Systems
Irina Marsh, Ed Conley, Amanda Coleman, Kjell Brataas, Dan Stoneking, and Ruxandra Mocanu
Building early warning systems (EWS) is a complex process, both technically and socially, and these differ significantly across continents, countries, and communities. However, they all have a similar vision and elements to build upon: risk knowledge, monitoring and warning, warning dissemination and communication, and response capability. Citizens must know, understand, and appreciate the risks. Program managers and public information professionals need help to accomplish that. They must unite with each other and the community to transition from a baseline to a level that promotes action. The monitoring and warning systems must function. Any misstep reduces trust. Lack of clarity results in a lack of action. The difference between system tests and real-world applications must be fully transparent. Warning dissemination and communication must occur before, during, and after any crisis event. All these areas are where operators and communicators need to link, and the response capability is integral to the content of the EWS.
The environment, geography, social characteristics, and previous disaster experiences also shape the EWS content. This can only be achieved through a people-centered approach. The media is vital in this operational phase for helping to implement and execute early warnings. In addition, the media play a related and equally critical role in strategic communications to educate and inform societies to respond appropriately. There are countless tools available to public affairs professionals, none mutually exclusive. The rote application of a news release followed by a tweet or two has been proven to be ineffective. EWS systems and strategic communications should be tailored to the needs of the individual communities. Community demographics, geographies, and cultural sensitivities determine optimum communication tools. Leveraging mediums that audiences prefer affords greater reach within vulnerable and disadvantaged communities. Their television, their radio, their print, and their social media are the bedrock for engagement. Mediums do not need to be high-tech. Messages can go into communities and schools, repeated by trusted messengers, through all means, including flyers, town halls, civic engagements, and other citizen-led initiatives. Social media has the capacity to be far-reaching, strategic, and audience-focused.
Case studies and best practices reveal what went wrong, what went right, and what can go right. They reveal the difference between effective and ineffective media and EWS. The landscape is changing; lessons elucidate that. Analysis, study, and reflection are foundational to more effective EWS in the future. For information to be actionable, it must be accessible.
Article
Megacity Disaster Risk Governance
James K. Mitchell
Megacity disaster risk governance is a burgeoning interdisciplinary field that seeks to encourage improved public decision-making about the safety and sustainability of the world’s largest urban centers in the face of environmental threats ranging from floods, storms, earthquakes, wildfires, and pandemics to the multihazard challenges posed by human-forced climate change. It is a youthful, lively, contested, ambitious and innovative endeavor that draws on research in three separate but overlapping areas of inquiry: disaster risks, megacities, and governance. Toward the end of the 20th century, each of these fields underwent major shifts in thinking that opened new possibilities for action. First, the human role in disaster risks came to the fore, giving increased attention to humans as agents of risk creation and providing increased scope for inputs from social sciences and humanities. Second, the scale, complexity, and political–economic salience of very large cities attained high visibility, leading to recognition that they are also sites of unprecedented risks, albeit with significant differences between rapidly growing poorer cities and slower growing affluent ones. Third, the concept of public decision-making expanded beyond its traditional association with actions of governments to include contributions from a wide range of nongovernmental groups that had not previously played prominent roles in public affairs. At least three new conceptions of megacity disaster risk governance emerged out of these developments. They include adaptive risk governance, smart city governance, and aesthetic governance. Adaptive risk governance focuses on capacities of at-risk communities to continuously adjust to dynamic uncertainties about future states of biophysical environments and human populations. It is learning-centered, collaborative, and nimble. Smart city governance seeks to harness the capabilities of new information and communication technologies, and their associated human institutions, to the increasingly automated tasks of risk anticipation and response. Aesthetic governance privileges the preferences of social, scientific, design, or political elites and power brokers in the formulation and execution of policies that bear on risks. No megacity has yet comprehensively or uniformly adopted any of these risk governance models, but many are experimenting with various permutations and hybrid variations that combine limited applications with more traditional administrative practices. Arrangements that are tailor-made to fit local circumstances are the norm. However, some version of adaptive risk governance seems to be the leading candidate for wider adoption, in large part because it recognizes the need to continuously accommodate new challenges as environments and societies change and interact in ways that are difficult to predict. Although inquiries are buoyant, there remain many unanswered questions and unaddressed topics. These include the differential vulnerability of societal functions that are served by megacities and appropriate responses thereto; the nature and biases of risk information transfers among different types of megacities; and appropriate ways of tackling ambiguities that attend decision-making in megacities. Institutions of megacity disaster risk governance will take time to evolve. Whether that process can be speeded up and applied in time to stave off the worst effects of the risks that lie ahead remains an open question.
Article
Mis- and Disinformation
Yiyun Shou, Ozan Kuru, Eryn Newman, and Michael Smithson
Mis- and disinformation have been a major challenge in risk communication and management of natural hazards. Mis- and disinformation create obstacles by misleading the public about natural hazards, including risks, and consequently can adversely impact individual citizens’ behaviours. The origin and spread of mis- and disinformation involve a range of social and psychological factors. The issue of what is regarded as valid or invalid information boils down to socially constructed persuasions and agreements about what is true and what is not. The mechanism behind persuasion about misinformation could benefit from understanding persuasion about information in general. Some key psychological aspects of people’s susceptibility to mis- and disinformation centre around how people accept or reject knowledge, process information, and perceive knowledge and truth. Meanwhile, critical social and environmental aspects such as media and group dynamics facilitate the transmission and generation of mis- and disinformation. Both psychological and social factors can amplify each other in contributing to the difficulty in battling mis- and disinformation in the contemporary digital era. Combating mis- and disinformation requires efforts from various stakeholders, especially the media, government, and regulators. There have been increasing efforts from the scientific community, media, and governments to address the detrimental impacts of mis- and disinformation. A number of strategies and interventions have been introduced or implemented at the media and policymaking levels. However, there are critiques of these approaches and calls for more multilateral efforts to address mis- and disinformation in a larger societal context.
Article
Modeling Power Outage Risk From Natural Hazards
Seth Guikema and Roshanak Nateghi
Natural disasters can have significant widespread impacts on society, and they often lead to loss of electric power for a large number of customers in the most heavily impacted areas. In the United States, severe weather and climate events have been the leading cause of major outages (i.e., more than 50,000 customers affected), leading to significant socioeconomic losses. Natural disaster impacts can be modeled and probabilistically predicted prior to the occurrence of the extreme event, although the accuracy of the predictive models will vary across different types of disasters. These predictions can help utilities plan for and respond to extreme weather and climate events, helping them better balance the costs of disaster responses with the need to restore power quickly. This, in turn, helps society recover from natural disasters such as storms, hurricanes, and earthquakes more efficiently. Modern Bayesian methods may provide an avenue to further improve the prediction of extreme event impacts by allowing first-principles structural reliability models to be integrated with field-observed failure data.
Climate change and climate nonstationarity pose challenges for natural hazards risk assessment, especially for hydrometeorological hazards such as tropical cyclones and floods, although the link between these types of hazards and climate change remains highly uncertain and the topic of many research efforts. A sensitivity-based approach can be taken to understand the potential impacts of climate change-induced alterations in natural hazards such as hurricanes. This approach gives an estimate of the impacts of different potential changes in hazard characteristics, such as hurricane frequency, intensity, and landfall location, on the power system, should they occur. Further research is needed to better understand and probabilistically characterize the relationship between climate change and hurricane intensity, frequency, and landfall location, and to extend the framework to other types of hydroclimatological events.
Underlying the reliability of power systems in the United States is a diverse set of regulations, policies, and rules governing electric power system reliability. An overview of these regulations and the challenges associated with current U.S. regulatory structure is provided. Specifically, high-impact, low-frequency events such as hurricanes are handled differently in the regulatory structure; there is a lack of consistency between bulk power and the distribution system in terms of how their reliability is regulated. Moreover, the definition of reliability used by the North American Reliability Corporation (NERC) is at odds with generally accepted definitions of reliability in the broader reliability engineering community. Improvements in the regulatory structure may have substantial benefit to power system customers, though changes are difficult to realize.
Overall, broader implications are raised for modeling other types of natural hazards. Some of the key takeaway messages are the following: (1) the impacts natural hazard on infrastructure can be modeled with reasonable accuracy given sufficient data and modern risk analysis methods; (2) there are substantial data on the impacts of some types of natural hazards on infrastructure; and (3) appropriate regulatory frameworks are needed to help translate modeling advances and insights into decreased impacts of natural hazards on infrastructure systems.
Article
Modeling Tropical Cyclones in a Changing Climate
Enrico Scoccimarro
Tropical cyclones (TCs) in their most intense expression (hurricanes or typhoons) are the main natural hazards known to humankind. The impressive socioeconomic consequences for countries dealing with TCs make our ability to model these organized convective structures a key issue to better understanding their nature and their interaction with the climate system. The destructive effects of TCs are mainly caused by three factors: strong wind, storm surge, and extreme precipitation. These TC-induced effects contribute to the annual worldwide damage of the order of billions of dollars and a death toll of thousands of people. Together with the development of tools able to simulate TCs, an accurate estimate of the impact of global warming on TC activity is thus not only of academic interest but also has important implications from a societal and economic point of view. The aim of this article is to provide a description of the TC modeling implementations available to investigate present and future climate scenarios.
The two main approaches to dynamically model TCs under a climate perspective are through hurricane models and climate models. Both classes of models evaluate the numerical equations governing the climate system. A hurricane model is an objective tool, designed to simulate the behavior of a tropical cyclone representing the detailed time evolution of the vortex. Considering the global scale, a climate model can be an atmosphere (or ocean)-only general circulation model (GCM) or a fully coupled general circulation model (CGCM). To improve the ability of a climate model in representing small-scale features, instead of a general circulation model, a regional model (RM) can be used: this approach makes it possible to increase the spatial resolution, reducing the extension of the domain considered. In order to be able to represent the tropical cyclone structure, a climate model needs a sufficiently high horizontal resolution (of the order of tens of kilometers) leading to the usage of a great deal of computational power.
Both tools can be used to evaluate TC behavior under different climate conditions. The added value of a climate model is its ability to represent the interplay of TCs with the climate system, namely two-way relationships with both atmosphere and ocean dynamics and thermodynamics. In particular, CGCMs are able to take into account the well-known feedback between atmosphere and ocean components induced by TC activity and also the TC–related remote impacts on large-scale atmospheric circulation.
The science surrounding TCs has developed in parallel with the increasing complexity of the mentioned tools, both in terms of progress in explaining the physical processes involved and the increased availability of computational power. Many climate research groups around the world, dealing with such numerical models, continuously provide data sets to the scientific community, feeding this branch of climate change science.
Article
Vehicle-Related Causes of Flood Fatalities
Andrew Gissing, Kyra Hamilton, Grantley Smith, and Amy E. Peden
Vehicle-related flood incidents represent a leading cause of flood fatalities, as well as resulting in an additional health system and emergency services burden. A large proportion of these deaths are preventable and represent an area of collaboration across a range of fields, including emergency services, disaster preparedness, floodplain management, public health, and road safety. The nature of the risk is exacerbated by increases in the frequency and severity of flood events in a warming climate and further urbanization.
The nature of vehicle-related flood incidents is multidimensional, consisting of flood hazard, behavioral, vehicle, and road-related factors. Equally, strategies required to reduce the incidence of vehicles entering floodwater must be multidimensional, giving consideration to behavioral, regulatory, structural, and emergency response measures. Such an approach requires the involvement of a diverse range of stakeholders.