101-120 of 147 Results

Article

Permafrost, or perennially frozen ground, and the processes linked to the water phase change in ground-pore media are sources of specific dangers to infrastructure and economic activity in cold mountainous regions. Additionally, conventional natural hazards (such as earthquakes, floods, and landslides) assume special characteristics in permafrost territories. Permafrost hazards are created under two conditions. The first is a location with ice-bounded or water-saturated ground, in which the large amount of ice leads to potentially intensive processes of surface settlement or frost heaving. The second is linked with external, natural, and human-made disturbances that change the heat-exchange conditions. The places where ice-bounded ground meets areas that are subject to effective disturbances are the focus of hazard mapping and risk evaluation. The fundamentals of geohazard evaluation and geohazard mapping in permafrost regions were originally developed by Gunnar Beskow, Vladimir Kudryavtsev, Troy Péwé, Oscar Ferrians, Jerry Brown, and other American, European, and Soviet authors from 1940s to the 1980s. Modern knowledge of permafrost hazards was significantly enriched by the publication of Russian book called Permafrost Hazards, part of the six-volume series Natural Hazards in Russia (2000). The book describes, analyses, and evaluates permafrost-related hazards and includes methods for their modeling and mapping. Simultaneous work on permafrost hazard evaluation continued in different countries with the active support of the International Permafrost Association. Prominent contributions during the new period of investigation were published by Drozdov, Clarke, Kääb, Pavlov, Koff and several other thematic groups of researchers. The importance of common international works became evident. The international project RiskNat: A Cross-Border European Project Taking into Account Permafrost-Related Hazards was developed as a new phenomenon in scientific development. The intensive economic development in China presented new challenges for linear transportation routes and hydrologic infrastructures. A study of active fault lines and geological hazards along the Golmud–Lhasa Railway across the Tibetan plateau is a good example of the achievements by Chinese scientists. The method for evaluating the permafrost hazards was based on survey data, monitoring data, and modeling results. The survey data reflected the current environmental conditions, and they are usually shown on a permafrost map. The monitoring data are helpful in understanding the current tendencies of permafrost evolution in different landscapes and regions. The modeling data provided a permafrost forecast that takes climate change and its impact on humans into account. The International Conference on Permafrost in 2016, in Potsdam, Germany, demonstrated the new horizons of conventional and special permafrost mapping in offshore and continental areas. Permafrost hazards concern large and diverse aspects of human life. It is necessary to expand the approach to this problem from geology to also include geography, biology, social sciences, engineering, and other spheres of competencies in order to synthesize local and regional information. The relevance of this branch of science grows with taking into account climate change and the growing number of natural disasters.

Article

Anna Bozza, Domenico Asprone, and Gaetano Manfredi

In the early 21st century, achieving the sustainability of urban environments while coping with increasingly occurring natural disasters is a very ambitious challenge for contemporary communities. In this context, urban resilience is a comprehensive objective that communities can follow to ensure future sustainable cities able to cope with the risks to which they are exposed. Researchers have developed different definitions of resilience as this concept has been applied to diverse topics and issues in recent decades. Essentially, resilience is defined as the capability of a system to withstand major unexpected events and recover in a functional and efficient manner. When dealing with urban environments, the efficiency of the recovery can be related to multiple aspects, many of which are often hard to control. Mainly it is quantified in terms of the restoration of urban economy, population, and built form (Davoudi et al., 2012). In this article, engineering resilience is defined in relation to cities’ capability to be sustainable in the phase of an extreme event occurrence while reconfiguring their physical configuration. In this view, a city is resilient if it is sustainable in the occurrence of a hazardous event. Accordingly, in an urban context, a wide range of nonhomogeneous factors and intrinsic dynamics have to be accounted for, which requires a multi-scale approach, from the single building level to the urban and, ultimately, the global environmental scale. As a consequence, cities can be understood as physical systems assessed through engineering metrics. Hence, the physical dimension represents a starting point from which to approach resilience. When shifting the focus from the single structure to the city scale, human behavior is revealed to be a critical factor because social actors behave and make choices every day in an unpredictable and unorganized manner, which affects city functioning. According to the ecosystem theory, urban complexity can be addressed through the ecosystem theory approach, which accounts for interrelations between physical and human components.

Article

Abdelghani Meslem and Dominik H. Lang

In the fields of earthquake engineering and seismic risk reduction the term “physical vulnerability” defines the component that translates the relationship between seismic shaking intensity, dynamic structural uake damage and loss assessment discipline in the early 1980s, which aimed at predicting the consequences of earthquake shaking for an individual building or a portfolio of buildings. In general, physical vulnerability has become one of the main key components used as model input data by agencies when developinresponse (physical damage), and cost of repair for a particular class of buildings or infrastructure facilities. The concept of physical vulnerability started with the development of the earthqg prevention and mitigation actions, code provisions, and guidelines. The same may apply to insurance and reinsurance industry in developing catastrophe models (also known as CAT models). Since the late 1990s, a blossoming of methodologies and procedures can be observed, which range from empirical to basic and more advanced analytical, implemented for modelling and measuring physical vulnerability. These methods use approaches that differ in terms of level of complexity, calculation efforts (in evaluating the seismic demand-to-structural response and damage analysis) and modelling assumptions adopted in the development process. At this stage, one of the challenges that is often encountered is that some of these assumptions may highly affect the reliability and accuracy of the resulted physical vulnerability models in a negative way, hence introducing important uncertainties in estimating and predicting the inherent risk (i.e., estimated damage and losses). Other challenges that are commonly encountered when developing physical vulnerability models are the paucity of exposure information and the lack of knowledge due to either technical or nontechnical problems, such as inventory data that would allow for accurate building stock modeling, or economic data that would allow for a better conversion from damage to monetary losses. Hence, these physical vulnerability models will carry different types of intrinsic uncertainties of both aleatory and epistemic character. To come up with appropriate predictions on expected damage and losses of an individual asset (e.g., a building) or a class of assets (e.g., a building typology class, a group of buildings), reliable physical vulnerability models have to be generated considering all these peculiarities and the associated intrinsic uncertainties at each stage of the development process.

Article

Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems. That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.

Article

Natural disasters pose important problems for societies and governments. Governments are charged with making policies to protect public safety. Large disasters, then, can reveal problems in government policies designed to protect the public from the effects of such disasters. Large disasters can serve as focusing events, a term used to describe large, sudden, rare, and harmful events that gain a lot of attention from the public and from policy makers. Such disasters highlight problems and, as the public policy literature suggests, open windows of opportunity for policy change. However, as a review of United States disaster policy from 1950 through 2015 shows, change in disaster policy is often, but not always, driven by major disasters that act as focusing events. But the accumulation of experience from such disasters can lead to learning, which can be useful if later, even more damaging and attention-grabbing events arise.

Article

Timothy Mulligan, Kristin Taylor, and Rob A. DeLeo

Policies to manage natural hazards are made in a political context that has three important characteristics: local preferences and national priorities, short-sighted political decision-making, and policy choices informed by experience instead of future expectations. National governments can set broad policy priorities for natural hazard management, but it is often local governments, with conflicting policy priorities and distinctive hazard profiles, that have the authority to implement. Moreover, legislators who are tasked with passing laws to put policies into force are rewarded with reelection by voters who are only concerned with issues that have an immediate impact on their day-to-day lives (e.g., the economy) as opposed to hazards that may or may not occur until some undetermined point in the future. Finally, legislators themselves face challenges making policies to mitigate and manage hazards because they fail to see the longer-term risks and instead make decisions based on past experiences. This article broadly lays out the challenges of the policy environment for natural hazards, including intergovernmental concerns, policy myopia, and shifting policy priorities. It also describes the politics shaping the management of natural hazards, namely, electoral politics, the social dynamics of blame assignment, and the various political benefits associated with disaster relief spending.

Article

Anuradha Mukherji

Rapid urbanization and growing populations have put tremendous pressures on limited global housing stocks. As the frequency of disasters has increased with devastating impacts on this limited stock of housing, the discourse on post-disaster housing recovery has evolved in several ways. Prior to the 1970s, the field was largely understudied, and there was a narrow understanding of how households and communities rebuilt their homes after a catastrophic event and on the effectiveness of housing recovery policy and programs designed to assist them. Early debates on post-disaster housing recovery centered on cultural and technological appropriateness of housing recovery programs. The focus on materials, technology, and climate missed larger socioeconomic and political complexities of housing recovery. Since then, the field has come a long way: current theoretical and policy debates focus on the effect of governance structures, funding practices, the consequences of public and private interventions, and socioeconomic and institutional arrangements that effect housing recovery outcomes. There are a number of critical issues that shape long-term post-disaster housing recovery processes and outcomes, especially in urban contexts. Some of them include the role of the government in post-disaster housing recovery, governance practices that drive recovery processes and outcomes, the challenges of paying for post-disaster housing repair and reconstruction, the disconnect between planning for rebuilding and planning for housing recovery, and the mismatch between existing policy programs and housing needs after a catastrophic event—particularly for affordable housing recovery. Moreover, as housing losses after disasters continue to increase, and as the funding available to rebuild housing stocks shrinks, it has become increasingly important to craft post-disaster housing recovery policy and programs that apply the limited resources in the most efficient and impactful ways. Creating housing recovery programs by employing a needs-based approach instead of one based solely on loss could more effectively focus limited resources on those that might need it the most. Such an approach would be broad based and proportional, as it would address the housing recovery of a wide range of groups based upon their needs, including low-income renters, long-term leaseholders, residents of informal settlements and manufactured homes, as well as those with preexisting resources such as owner-occupant housing.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Natural disasters have increased dramatically in the twenty-first century. An estimated 217 million people are affected by natural disasters each year. Recent disasters, both nationally and globally, provide insight into how the degree of destruction and number of fatalities can negatively affect survivors. Cultural, political, and geographic factors may increase risk of trauma and negative mental health outcomes. Understanding these risks is critical to helping survivors recover in the aftermath of disasters. Different disasters pose different risks, and some communities are chronically affected. How to support these communities psychologically in the face of ongoing threats of destruction is an important question. Recent years have also seen major advances in technology that provide new and innovative ways to manage disasters. Technological strategies can be harnessed to better serve the interests of disaster-affected communities. For example, warning times for disasters have increased because of better instrumentation and the ability to send messages sooner to communities that may be in the path of a disaster. These increased warning times may allow for psychological preparation before a disaster that can support positive mental health outcomes in recovery. Demands for evidence-based mental health interventions require an understanding of best practices in disaster response, challenges to past relief efforts, and the strategies and factors that can enhance effective future efforts.

Article

A core responsibility of government is to protect people and property from disasters caused by natural hazards. The wide mix of policy instruments available and their impacts across governance systems to prevent and mitigate such disasters, to prepare and respond when they occur, and to provide for recovery offer a wealth of lessons for understanding policy instrument choice and impacts in a policy arena crucial to ensuring public safety. The array of options spans the entire policy process from problem definition and agenda-setting to policymaking, decision-making, and implementation, as well as evaluation. Regulatory instruments are especially important but individual voluntary behaviors are crucial. Instrument selection for dealing with natural hazards is a relatively understudied but emerging topic in the policy literature overall, which can inform the gamut of classical issues in the study of public policy. Comparative public policy research, an historical perspective, and careful attention to an array of research approaches are especially useful for examining instrument selection for natural hazards policies. This allows for acknowledging the gamut of diverse actors and agencies that span the public, private, and nonprofit sectors, as well as civil society. Policy choices are both domestic and internationalized. Importantly, policy instrument choices need to be examined across multiple levels of governance, both horizontal and vertical, and must not focus solely on the mix of policy instruments but also on actors and institutional structures, settings, and cultures. Research in political science, economics, public policy, and public administration is especially informative regarding public sector agency choice of policy instruments.

Article

Scott E. Robinson and Warren S. Eller

Natural hazards governance calls upon a diverse array of actors. The focus of most research—and most media coverage—has long been on governmental actors. Indeed, natural hazards governance relies on a complex arrangement of actors connected from the local, state, and national levels. Local organizations are the initial point of contact and face emerging threats. If the event exceeds the capacity of local organizations to respond, the governance system escalates the problem by expanding the participants to include state-level and, eventually, national-level actors. Natural hazards governance seeks to smooth and rationalize this process of escalation and expansion. Recent research has expanded this view to include nongovernmental actors like charitable organizations, religious institutions, and even private business. While charitable organizations have long been part of natural hazards governance, a broader range of charities, religious institutions, and private-sector companies has recently become more important to practice and scholarship. In many ways, the governance of these nongovernmental organizations resembles the structure of the governmental structure with its emphasis on escalation, expansion, and functional differentiation. Given the inclusion of so diverse a group of cooperating organizations, natural hazards governance faces notable challenges of communication, authority, and reliability.

Article

Public participation in environmental management, and more specifically in hazard mitigation planning, has received much attention from scholars and practitioners. A shift in perspective now sees the public as a fundamental player in decision making rather than simply as the final recipient of a policy decision. Including the public in hazard mitigation planning brings widespread benefits. First, communities gain awareness of the risks they live with, and thus, this is an opportunity to empower communities and improve their resilience. Second, supported by a collaborative participation process, emergency managers and planners can achieve the ultimate goal of strong mitigation plans. Although public participation is highly desired as an instrument to improve hazard mitigation planning, appropriate participation techniques are context dependent and some trade-offs exist in the process design (such as between representativeness and consensus building). Designing participation processes requires careful planning and an all-around consideration of the representativeness of stakeholders, timing, objectives, knowledge, and ultimately desired goals to achieve. Assessing participation also requires more consistent methods to facilitate policy learning from diverse experiences. New decision-support tools may be necessary to gain widespread participation from laypersons lacking technical knowledge of hazards and risks.

Article

The level of interest in public–private partnerships (P3s) is growing—along with supporting literature—and applications are expanding to include new areas where industry supplements public investments in return for measurable rewards. In what follows are timely observations to support P3 operating principles for natural hazards governance—working as an integrated team, sharing innovations, solving technical and operational problems, and engaging in voluntary associations to creatively solve problems. P3s involve voluntary collaboration to achieve common goals and financial benefit. In a globalized economy with highly interconnected systems, this spirit of innovation, sense of personal responsibility, and vision for collective partnerships can be seen throughout the world in the application of P3s. The impact and efficacy of P3s is not just realized in the pursuit of economic, security, safety, social, and environmental goals, but also in establishing integrated governance policies to contend with the persistent vulnerabilities of natural hazards. The emerging world of P3s and natural hazards governance can be illustrated by three real-world examples: (1) a catastrophic regional natural disaster; (2) an urban research-study focused on the measurement of critical infrastructure resilience; and (3) a summary of transportation systems in the unique environment of maritime ports. From these case studies, and a diverse selection of references, it highlights key findings that will benefit future research, critical analysis, and policy application, including academic value, integrated participation, evidence-based metrics, smart resilience, and future innovation.

Article

Public sector agencies at all levels of government work to mitigate risk, prepare for and respond to emergencies and disasters, and recover from catastrophic events. This action is guided by a national emergency management system that has evolved over time and was most recently reformed post-Hurricane Katrina. There is an extensive set of federal guidelines by the Department of Homeland Security and the Federal Emergency Management Agency that serve to structure the national system of hazard management. These include: the National Preparedness Goal; the National Preparedness System; National Planning Frameworks and accompanying Federal Interagency Operational Plans (FIOPs); the National Preparedness Report; and the Campaign to Build and Sustain Preparedness. Despite the considerable institutional and administrative guidance, there remain critical gaps in public-agency natural hazard management. These include lack of quality planning on the subnational level, insufficient local fiscal and human capital, and inconsistent regulation of the recovery process. While stricter implementation of federal mandates may partly address some of these issues, others will require greater political will in order to enact zoning regulations, create a shift in the acceptance of risk, and ensure that solutions are afforded by partnerships between civil, economic, and public entities.

Article

Humankind has always lived with natural hazards and their consequences. While the frequency and intensity of geological processes may have remained relatively stable, population growth and infrastructure development in areas susceptible to experiencing natural hazards has increased societal risk and the losses experienced from hazard activity. Furthermore, increases in weather-related (e.g., hurricanes, wildfires) hazards emanating from climate change will increase risk in some countries and result in others having to deal with natural hazard risk for the first time. Faced with growing and enduring risk, disaster risk reduction (DRR) strategies will play increasingly important roles in facilitating societal sustainability. This article discusses how readiness or preparedness makes an important contribution to comprehensive DRR. Readiness is defined here in terms of those factors that facilitate people’s individual and collective capability to anticipate, cope with, adapt to, and recover from hazard consequences. This article first discusses the need to conceptualize readiness as comprising several functional categories (structural, survival/direct action, psychological, community/capacity building, livelihood and community-agency readiness). Next, the article discusses how the nature and extent of people’s readiness is a function of the interaction between the information available and the personal, family, community and societal factors used to interpret information and support readiness decision-making. The health belief model (HBM), protection motivation theory (PMT), person-relative-to-event (PrE) theory, theory of planned behavior (TPB), critical awareness (CA), protective action decision model (PADM), and community engagement theory (CET) are used to introduce variables that inform people’s readiness decision-making. A need to consider readiness as a developmental process is discussed and identifies how the variables introduced in the above theories play different roles at different stages in the development of comprehensive readiness. Because many societies must learn to coexist with several sources of hazard, an “all-hazards” approach is required to facilitate the capacity of societies and their members to be resilient in the face of the various hazard consequences they may have to contend with. This article discusses research into readiness for the consequences that arise from earthquake, volcanic, flood, hurricane, and tornado hazards. Furthermore, because hazards transcend national and cultural divides, a comprehensive conceptualization of readiness must accommodate a cross-cultural perspective. Issues in the cross-cultural testing of theory is discussed, as is the need for further work into the relationship between readiness and culture-specific beliefs and processes.

Article

Jonathan J. Gourley and Robert A. Clark III

Flash floods are one of the world’s deadliest and costliest weather-related natural hazards. In the United States alone, they account for an average of approximately 80 fatalities per year. Damages to crops and infrastructure are particularly costly. In 2015 alone, flash floods accounted for over $2 billion of losses; this was nearly half the total cost of damage caused by all weather hazards. Flash floods can be either pluvial or fluvial, but their occurrence is primarily driven by intense rainfall. Predicting the specific locations and times of flash floods requires a multidisciplinary approach because the severity of the impact depends on meteorological factors, surface hydrologic preconditions and controls, spatial patterns of sensitive infrastructure, and the dynamics describing how society is using or occupying the infrastructure. Real-time flash flood forecasting systems rely on the observations and/or forecasts of rainfall, preexisting soil moisture and river-stage states, and geomorphological characteristics of the land surface and subsurface. The design of the forecast systems varies across the world in terms of their forcing, methodology, forecast horizon, and temporal and spatial scales. Their diversity can be attributed at least partially to the availability of observing systems and numerical weather prediction models that provide information at relevant scales regarding the location, timing, and severity of impending flash floods. In the United States, the National Weather Service (NWS) has relied upon the flash flood guidance (FFG) approach for decades. This is an inverse method in which a hydrologic model is run under differing rainfall scenarios until flooding conditions are reached. Forecasters then monitor observations and forecasts of rainfall and issue warnings to the public and local emergency management communities when the rainfall amounts approach or exceed FFG thresholds. This technique has been expanded to other countries throughout the world. Another approach, used in Europe, relies on model forecasts of heavy rainfall, where anomalous conditions are identified through comparison of the forecast cumulative rainfall (in space and time) with a 20-year archive of prior forecasts. Finally, explicit forecasts of flash flooding are generated in real time across the United States based on estimates of rainfall from a national network of weather radar systems.

Article

Guy J.-P. Schumann

For about 40 years, with a proliferation over the last two decades, remote sensing data, primarily in the form of satellite and airborne imagery and altimetry, have been used to study floods, floodplain inundation, and river hydrodynamics. The sensors and data processing techniques that exist to derive information about floods are numerous. Instruments that record flood events may operate in the visible, thermal, and microwave range of the electromagnetic spectrum. Due to the limitations posed by adverse weather conditions during flood events, radar (microwave range) sensors are invaluable for monitoring floods; however, if a visible image of flooding can be acquired, retrieving useful information from this is often more straightforward. During recent years, scientific contributions in the field of remote sensing of floods have increased considerably, and science has presented innovative research and methods for retrieving information content from multi-scale coverages of disastrous flood events all over the world. Progress has been transformative, and the information obtained from remote sensing of floods is becoming mature enough to not only be integrated with computer simulations of flooding to allow better prediction, but also to assist flood response agencies in their operations. Furthermore, this advancement has led to a number of recent and upcoming satellite missions that are already transforming current procedures and operations in flood modeling and monitoring, as well as our understanding of river and floodplain hydrodynamics globally. Global initiatives that utilize remote sensing data to strengthen support in managing and responding to flood disasters (e.g., The International Charter, The Dartmouth Flood Observatory, CEOS, NASA’s Servir and the European Space Agency’s Tiger-Net initiatives), primarily in developing nations, are becoming established and also recognized by many nations that are in need of assistance because traditional ground-based monitoring systems are sparse and in decline. The value remote sensing can offer is growing rapidly, and the challenge now lies in ensuring sustainable and interoperable use as well as optimized distribution of remote sensing products and services for science as well as operational assistance.

Article

Mahesh Prakash, James Hilton, Claire Miller, Vincent Lemiale, Raymond Cohen, and Yunze Wang

Remotely sensed data for the observation and analysis of natural hazards is becoming increasingly commonplace and accessible. Furthermore, the accuracy and coverage of such data is rapidly improving. In parallel with this growth are ongoing developments in computational methods to store, process, and analyze these data for a variety of geospatial needs. One such use of this geospatial data is for input and calibration for the modeling of natural hazards, such as the spread of wildfires, flooding, tidal inundation, and landslides. Computational models for natural hazards show increasing real-world applicability, and it is only recently that the full potential of using remotely sensed data in these models is being understood and investigated. Some examples of geospatial data required for natural hazard modeling include: • elevation models derived from RADAR and Light Detection and Ranging (LIDAR) techniques for flooding, landslide, and wildfire spread models • accurate vertical datum calculations from geodetic measurements for flooding and tidal inundation models • multispectral imaging techniques to provide land cover information for fuel types in wildfire models or roughness maps for flood inundation studies Accurate modeling of such natural hazards allows a qualitative and quantitative estimate of risks associated with such events. With increasing spatial and temporal resolution, there is also an opportunity to investigate further value-added usage of remotely sensed data in the disaster modeling context. Improving spatial data resolution allows greater fidelity in models allowing, for example, the impact of fires or flooding on individual households to be determined. Improving temporal data allows short and long-term trends to be incorporated into models, such as the changing conditions through a fire season or the changing depth and meander of a water channel.

Article

Abhilash Panda and Dilanthi Amaratunga

In 1990, 43% (2.3 billion) of the world’s population lived in urban areas, and by 2014 this percentage was at 54%. The urban population exceeded the rural population for the first time in 2008, and by 2050 it is predicted that urbanization will rise to 70% (see Albrito, “Making cities resilient: Increasing resilience to disasters at the local level,” Journal of Business Continuity & Emergency Planning, 2012). However, this increase in urban population has not been evenly spread throughout the world. As the urban population increases, the land area occupied by cities has increased at an even higher rate. It has been projected that by 2030, the urban population of developing countries will double, while the area covered by cities will triple (see United Nations, Department of Economic and Social Affairs, “World Urbanization Prospects: The 2014 Revision”). This emphasizes the need for resilience in the urban environment to anticipate and respond to disasters. Realizing this need, many local and international organizations have developed tools and frameworks to assist governments to plan and implement disaster risk reduction strategies efficiently. Sendai Framework’s Priorities for Action, Making Cities Resilient: My City is Getting Ready, and UNISDR’s Disaster Resilience Scorecard for Cities are major documents that provide essential guidelines for urban resilience. Given that, the disaster governance also needs to be efficient with ground-level participation for the implementation of these frameworks. This can be reinforced by adequate financing and resources depending on the exposure and risk of disasters. In essence, the resilience of a city is the resistance, coping capacity, recovery, adaptive capacity, and responsibility of everyone.

Article

The management of natural hazards is undergoing considerable transformation, including the establishment of risk-based management approaches, the encouragement to govern natural hazards more inclusively, and the rising relevance of the concept of resilience. The benefits of this transformation are usually framed like this: Risk-based approaches are regarded as a rational way of balancing the costs associated with mitigating the consequences of hazards and the anticipated benefits; inclusive modes of governing risks help to increase the acceptance and quality of management processes as well as their outcomes; and the concept of resilience is connoted positively since it demands a greater openness to uncertainties and aims at increasing the capacities of various actors to cope with radical surprises. However, the increasing consideration of both concepts in policy and decision-making processes is associated with a changing demarcation between public and private responsibilities and with an altering relationship between organizations involved in the management process and the wider public. To understand some of these dynamics, this contribution undertakes a change of perspective throughout its development: Instead of asking how the concepts of risk or resilience might be useful to improve the management and governance of natural hazards, one must understand how societies, particularly with regard to their handling of risks and hazards, are governed through the concepts of risk and resilience. Following this perspective, risk-based management approaches have a defensive function in deflecting blame and rationalizing policy choices ex-ante by enabling managing organizations to more clearly define which risks they are responsible for (i.e., non-acceptable risks) and which are beyond their responsibility (i.e., acceptable risks). This demarcation also has profound distributional effects as acceptable risks usually need to be mitigated individually, raising the question of how to ensure the just sharing of the differently distributed benefits and burdens of risk-based approaches. The concept of resilience in this context plays a paradoxical yet complementary role: In its more operational interpretation (e.g., adaptive management), resilience-based management approaches can be in conflict with risk-based approaches as they require those responsible for managing risks to follow antagonistic goals. While the idea of resilience puts an emphasis on openness and flexibility, risk-based approaches try to ensure proportionality by transforming uncertainties into calculable risks. At the same time, resilience-based governance approaches, with their emphasis on self-organization and learning, complement risk-based approaches in the sense that actors or communities that are exposed to “acceptable risks” are implicitly or explicitly made responsible for maintaining their own resilience, whereas the role of public authorities is usually restricted to an enabling one.

Article

Maria Papathoma-Köhle and Dale Dominey-Howes

The second priority of the Sendai Framework for Disaster Risk Reduction 2015–2030 stresses that, to efficiently manage risk posed by natural hazards, disaster risk governance should be strengthened for all phases of the disaster cycle. Disaster management should be based on adequate strategies and plans, guidance, and inter-sector coordination and communication, as well as the participation and inclusion of all relevant stakeholders—including the general public. Natural hazards that occur with limited-notice or no-notice (LNN) challenge these efforts. Different types of natural hazards present different challenges to societies in the Global North and the Global South in terms of detection, monitoring, and early warning (and then response and recovery). For example, some natural hazards occur suddenly with little or no warning (e.g., earthquakes, landslides, tsunamis, snow avalanches, flash floods, etc.) whereas others are slow onset (e.g., drought and desertification). Natural hazards such as hurricanes, volcanic eruptions, and floods may unfold at a pace that affords decision-makers and emergency managers enough time to affect warnings and to undertake preparedness and mitigative activities. Others do not. Detection and monitoring technologies (e.g., seismometers, stream gauges, meteorological forecasting equipment) and early warning systems (e.g., The Australian Tsunami Warning System) have been developed for a number of natural hazard types. However, their reliability and effectiveness vary with the phenomenon and its location. For example, tsunamis generated by submarine landslides occur without notice, generally rendering tsunami-warning systems inadequate. Where warnings are unreliable or mis-timed, there are serious implications for risk governance processes and practices. To assist in the management of LNN events, we suggest emphasis should be given to the preparedness and mitigation phases of the disaster cycle, and in particular, to efforts to engage and educate the public. Risk and vulnerability assessment is also of paramount importance. The identification of especially vulnerable groups, appropriate land use planning, and the introduction and enforcement of building codes and reinforcement regulations, can all help to reduce casualties and damage to the built environment caused by unexpected events. Moreover, emergency plans have to adapt accordingly as they may differ from the evacuation plans for events with a longer lead-time. Risk transfer mechanisms, such as insurance, and public-private partnerships should be strengthened, and redevelopment should consider relocation and reinforcement of new buildings. Finally, participation by relevant stakeholders is a key concept for the management of LNN events as it is also a central component for efficient risk governance. All relevant stakeholders should be identified and included in decisions and their implementation, supported by good communication before, during, and after natural hazard events. The implications for risk governance of a number of natural hazards are presented and illustrated with examples from different countries from the Global North and the Global South.