81-100 of 187 Results

Article

Managing Vulnerability During Cascading Disasters: Language Access Services  

Federico Marco Federici

Communication underpins all phases of disaster risk reduction: it is at the heart of risk mitigation, by increasing resilience and preparedness, and by interacting with affected communities in the response phase and throughout the reconstruction and recovery after a disaster. Communication does not alter the scope or severity of a disaster triggered by natural hazards, but the extent to which risk reduction strategies impact on affected regions depends greatly on existing differences inherent in the society of these regions. Ethnic minorities and multilingual language groups―which are not always one and the same―may become vulnerable groups when there has been little or no planning or no awareness of the impact of limited access to trustworthy information when the disaster strikes. Furthermore, large-scale disasters are likely to involve personnel from the humanitarian sector from both local and international offices. Communication in most large-scale events has progressively become multilingual; from the late 20th and early 21st centuries, it is expected that large disasters see collaboration between intergovernmental, governmental, local, national, and international entities that operate in different ways in rescue and relief operations. Regardless of linguistic contexts, communication of reliable information in a trustworthy manner is complex to achieve in the aftermath of a disaster, which may instantaneously affect telecommunication infrastructures (overloading VOIP and GPS systems). From coordination to information, clear communication plays a role in any activity intending to reduce risks, damages, morbidity, and mortality. Achieving clear communication in crisis management is a feat in a monolingual context: people from different organizations and with different capacities in multi-agency operations have at least a common language, nonetheless, terminology varies from one organization to another, thus hampering successful communication. Achieving effective and clear communication with multilingual communities, while using one language (or lingua franca), such as English, Arabic, Spanish, or Hindi, depending on the region, is impossible without due consideration to language translation.

Article

Masculinities and Disaster  

Scott McKinnon

Gender plays a role in all phases of the disaster cycle, from the lived experience of disaster survivors to the development of disaster risk reduction (DRR) policy and practice. Early research into the entanglement of gender and disaster revealed how women are made more vulnerable to disaster impacts by sexist and misogynist social structures. Researchers have since identified women’s central roles in building disaster resilience and aiding community recovery. Feminist scholarship has been highly influential in disasters research, prompting consideration of how intersecting social characteristics, including gender, sexuality, race, class, and bodily ability each contributes to the social construction of disaster. Drawing on work in the field of critical men’s studies, a small but growing body of research has engaged with the role of gender in men’s disaster experiences, as well as how hegemonic masculinity shapes emergency management practice, constructs widely understood disaster narratives, and influences the development of DRR policy, including policies related to the crisis of climate change. Rather than a fixed identity, hegemonic masculinity operates as a culturally dominant ideal to which men and boys are expected to strive. It is spatially constituted and relational, often defined by attributes including physical strength, bravery, and confidence. To date, the most substantial focus of research into masculinity and disasters relates to the lived and bodily experience of men impacted by wildfire. Australian researchers in particular have identified ways in which hegemonic ideals increase the disaster vulnerability of men, who feel pressure to act with bravery and to exhibit emotional and physical strength in conditions of extreme danger. Expectations of stoicism and courage equally impact men’s recovery from disaster, potentially limiting opportunities to access necessary support systems, particularly in relation to mental health and emotional well-being. Hegemonic masculine ideals similarly impact the experiences of frontline emergency workers. Emergency management workplaces are often constructed as masculine spaces, encouraging high-risk behaviors by male workers, and limiting opportunities for participation by people of other genders. Male dominance in the leadership of emergency management organizations also impacts policy and practice, including in the distribution of resources and in attentiveness to the role of gender in the disaster experiences of many survivors. Dominant disaster narratives, as seen in movies and the news media, contribute to the idea that disaster landscapes are ideal places for the performance of hegemonic masculine identities. Male voices dominate in media reporting of disasters, often leaving invisible the experiences of other people, with consequences for how disasters are understood by the wider public. Common tropes in Hollywood cinema similarly depict disasters as masculine events, in which brave cisgender men protect vulnerable cisgender women, with people of other genders entirely invisible. Identifying and addressing the role of masculinities in disaster is increasingly important within the crisis of global heating. As climate change increases the frequency and intensity of disasters, new ways of engaging with the environment and constructing DRR policy has become more urgent. Research in this field offers a critical baseline by which to move beyond binary gender definitions and to address damaging masculine ideals that ultimately harm the environment and people of all genders.

Article

Measuring Flood Discharge  

Marian Muste and Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.

Article

Megacity Disaster Risk Governance  

James K. Mitchell

Megacity disaster risk governance is a burgeoning interdisciplinary field that seeks to encourage improved public decision-making about the safety and sustainability of the world’s largest urban centers in the face of environmental threats ranging from floods, storms, earthquakes, wildfires, and pandemics to the multihazard challenges posed by human-forced climate change. It is a youthful, lively, contested, ambitious and innovative endeavor that draws on research in three separate but overlapping areas of inquiry: disaster risks, megacities, and governance. Toward the end of the 20th century, each of these fields underwent major shifts in thinking that opened new possibilities for action. First, the human role in disaster risks came to the fore, giving increased attention to humans as agents of risk creation and providing increased scope for inputs from social sciences and humanities. Second, the scale, complexity, and political–economic salience of very large cities attained high visibility, leading to recognition that they are also sites of unprecedented risks, albeit with significant differences between rapidly growing poorer cities and slower growing affluent ones. Third, the concept of public decision-making expanded beyond its traditional association with actions of governments to include contributions from a wide range of nongovernmental groups that had not previously played prominent roles in public affairs. At least three new conceptions of megacity disaster risk governance emerged out of these developments. They include adaptive risk governance, smart city governance, and aesthetic governance. Adaptive risk governance focuses on capacities of at-risk communities to continuously adjust to dynamic uncertainties about future states of biophysical environments and human populations. It is learning-centered, collaborative, and nimble. Smart city governance seeks to harness the capabilities of new information and communication technologies, and their associated human institutions, to the increasingly automated tasks of risk anticipation and response. Aesthetic governance privileges the preferences of social, scientific, design, or political elites and power brokers in the formulation and execution of policies that bear on risks. No megacity has yet comprehensively or uniformly adopted any of these risk governance models, but many are experimenting with various permutations and hybrid variations that combine limited applications with more traditional administrative practices. Arrangements that are tailor-made to fit local circumstances are the norm. However, some version of adaptive risk governance seems to be the leading candidate for wider adoption, in large part because it recognizes the need to continuously accommodate new challenges as environments and societies change and interact in ways that are difficult to predict. Although inquiries are buoyant, there remain many unanswered questions and unaddressed topics. These include the differential vulnerability of societal functions that are served by megacities and appropriate responses thereto; the nature and biases of risk information transfers among different types of megacities; and appropriate ways of tackling ambiguities that attend decision-making in megacities. Institutions of megacity disaster risk governance will take time to evolve. Whether that process can be speeded up and applied in time to stave off the worst effects of the risks that lie ahead remains an open question.

Article

Modeling Power Outage Risk From Natural Hazards  

Seth Guikema and Roshanak Nateghi

Natural disasters can have significant widespread impacts on society, and they often lead to loss of electric power for a large number of customers in the most heavily impacted areas. In the United States, severe weather and climate events have been the leading cause of major outages (i.e., more than 50,000 customers affected), leading to significant socioeconomic losses. Natural disaster impacts can be modeled and probabilistically predicted prior to the occurrence of the extreme event, although the accuracy of the predictive models will vary across different types of disasters. These predictions can help utilities plan for and respond to extreme weather and climate events, helping them better balance the costs of disaster responses with the need to restore power quickly. This, in turn, helps society recover from natural disasters such as storms, hurricanes, and earthquakes more efficiently. Modern Bayesian methods may provide an avenue to further improve the prediction of extreme event impacts by allowing first-principles structural reliability models to be integrated with field-observed failure data. Climate change and climate nonstationarity pose challenges for natural hazards risk assessment, especially for hydrometeorological hazards such as tropical cyclones and floods, although the link between these types of hazards and climate change remains highly uncertain and the topic of many research efforts. A sensitivity-based approach can be taken to understand the potential impacts of climate change-induced alterations in natural hazards such as hurricanes. This approach gives an estimate of the impacts of different potential changes in hazard characteristics, such as hurricane frequency, intensity, and landfall location, on the power system, should they occur. Further research is needed to better understand and probabilistically characterize the relationship between climate change and hurricane intensity, frequency, and landfall location, and to extend the framework to other types of hydroclimatological events. Underlying the reliability of power systems in the United States is a diverse set of regulations, policies, and rules governing electric power system reliability. An overview of these regulations and the challenges associated with current U.S. regulatory structure is provided. Specifically, high-impact, low-frequency events such as hurricanes are handled differently in the regulatory structure; there is a lack of consistency between bulk power and the distribution system in terms of how their reliability is regulated. Moreover, the definition of reliability used by the North American Reliability Corporation (NERC) is at odds with generally accepted definitions of reliability in the broader reliability engineering community. Improvements in the regulatory structure may have substantial benefit to power system customers, though changes are difficult to realize. Overall, broader implications are raised for modeling other types of natural hazards. Some of the key takeaway messages are the following: (1) the impacts natural hazard on infrastructure can be modeled with reasonable accuracy given sufficient data and modern risk analysis methods; (2) there are substantial data on the impacts of some types of natural hazards on infrastructure; and (3) appropriate regulatory frameworks are needed to help translate modeling advances and insights into decreased impacts of natural hazards on infrastructure systems.

Article

Modeling Tropical Cyclones in a Changing Climate  

Enrico Scoccimarro

Tropical cyclones (TCs) in their most intense expression (hurricanes or typhoons) are the main natural hazards known to humankind. The impressive socioeconomic consequences for countries dealing with TCs make our ability to model these organized convective structures a key issue to better understanding their nature and their interaction with the climate system. The destructive effects of TCs are mainly caused by three factors: strong wind, storm surge, and extreme precipitation. These TC-induced effects contribute to the annual worldwide damage of the order of billions of dollars and a death toll of thousands of people. Together with the development of tools able to simulate TCs, an accurate estimate of the impact of global warming on TC activity is thus not only of academic interest but also has important implications from a societal and economic point of view. The aim of this article is to provide a description of the TC modeling implementations available to investigate present and future climate scenarios. The two main approaches to dynamically model TCs under a climate perspective are through hurricane models and climate models. Both classes of models evaluate the numerical equations governing the climate system. A hurricane model is an objective tool, designed to simulate the behavior of a tropical cyclone representing the detailed time evolution of the vortex. Considering the global scale, a climate model can be an atmosphere (or ocean)-only general circulation model (GCM) or a fully coupled general circulation model (CGCM). To improve the ability of a climate model in representing small-scale features, instead of a general circulation model, a regional model (RM) can be used: this approach makes it possible to increase the spatial resolution, reducing the extension of the domain considered. In order to be able to represent the tropical cyclone structure, a climate model needs a sufficiently high horizontal resolution (of the order of tens of kilometers) leading to the usage of a great deal of computational power. Both tools can be used to evaluate TC behavior under different climate conditions. The added value of a climate model is its ability to represent the interplay of TCs with the climate system, namely two-way relationships with both atmosphere and ocean dynamics and thermodynamics. In particular, CGCMs are able to take into account the well-known feedback between atmosphere and ocean components induced by TC activity and also the TC–related remote impacts on large-scale atmospheric circulation. The science surrounding TCs has developed in parallel with the increasing complexity of the mentioned tools, both in terms of progress in explaining the physical processes involved and the increased availability of computational power. Many climate research groups around the world, dealing with such numerical models, continuously provide data sets to the scientific community, feeding this branch of climate change science.

Article

Vehicle-Related Causes of Flood Fatalities  

Andrew Gissing, Kyra Hamilton, Grantley Smith, and Amy E. Peden

Vehicle-related flood incidents represent a leading cause of flood fatalities, as well as resulting in an additional health system and emergency services burden. A large proportion of these deaths are preventable and represent an area of collaboration across a range of fields, including emergency services, disaster preparedness, floodplain management, public health, and road safety. The nature of the risk is exacerbated by increases in the frequency and severity of flood events in a warming climate and further urbanization. The nature of vehicle-related flood incidents is multidimensional, consisting of flood hazard, behavioral, vehicle, and road-related factors. Equally, strategies required to reduce the incidence of vehicles entering floodwater must be multidimensional, giving consideration to behavioral, regulatory, structural, and emergency response measures. Such an approach requires the involvement of a diverse range of stakeholders.

Article

Multilevel Environmental Governance in the European Union and United States  

Colin Provost

Managing the risks of climate change partly involves setting and implementing regulatory standards that help to diminish the causes of climate change. This means setting regulatory standards that require businesses to emit fewer pollutants, most notably carbon dioxide. In large federalist systems like the United States and the European Union, this regulation is produced by a variety of institutional structures and policy instruments as well. In the United States, federal regulations often encompass stricter standards with less flexibility; these standards have direct impacts on the relevant regulated interests, but they also influence the content and structure of non-governmental regulations, such as those promulgated by NGOs or industry trade associations. This influential “shadow of hierarchy” can be witnessed in both the U.S. and E.U. However, at a more local level, businesses and governments do not solely operate within the confines of strict, hierarchical regulation. Both sets of organizations join together horizontally to form compacts and regulatory networks that are often characterized more by guidance, soft law and collaborative efforts. While such institutions can be a welcome and effective complement to stricter, hierarchical regulation, such networks require high levels of trust and goal congruence to overcome the potential collective action problems that are inherently possible in such networks. Finally, the conditions under which networks and hierarchies both develop to construct environmental regulatory policies will depend on the dynamics of the policy process as well. Under ordinary circumstances, diverging preferences and collective action problems may create the foundation for more incremental and weaker regulatory standards, whereas an environmental disaster might create a groundswell of support for strict, judicially binding legislation. In this way, policy processes affect the structure of hierarchies and networks and ultimately the shape of regulations designed to mitigate the effects of climate change.

Article

Natural Disaster Risk Financing and Transfer in ASEAN Countries  

Sommarat Chantarat and Paul A. Raschky

ASEAN countries are frequently hit by a variety of natural disasters, and a large fraction of economic activity in ASEAN countries is located in areas exposed to these natural perils. Increasing disaster damages require ASEA countries to manage the financial losses in a more efficient and proactive manner. Currently, most risk-transfer mechanisms in this region rely on ad-hoc government relief, which is not sustainable. Multilateral cooperation in the areas of risk-modeling and mapping as well as joint efforts to establish financial risk-transfer solutions could help to overcome existing challenges in this area.

Article

Natural Flood Risk Management  

Anna Murgatroyd and Simon Dadson

Flooding is a natural hazard with the potential to cause damage at the local, national, and global scale. Flooding is a natural product of heavy precipitation and increased runoff. It may also arise from elevated groundwater tables, coastal inundation, or failed drainage systems. Flooded areas can be identified as land beyond the channel network covered by water. Although flooding can cause significant damage to urban developments and infrastructure, it may be beneficial to the natural environment. Preemptive actions may be taken to protect communities at risk of inundation that are not able to relocate to an area not at risk of flooding. Adaptation measures include flood defenses, river channel modification, relocation, and active warning systems. Natural flood management (NFM) interventions are designed to restore, emulate, or enhance catchment processes. Such interventions are common in upper reaches of the river and in areas previously transformed by agriculture and urban development. Natural techniques can be categorized into three groups: water retention through management of infiltration and overland flow, managing channel connectivity and conveyance, and floodplain conveyance and storage. NFM may alter land use, improve land management, repair river channel morphology, enhance the riparian habitat, enrich floodplain vegetation, or alter land drainage. The range of natural flood management options allows a diverse range of flood hazards to be considered. As a consequence, there is an abundance of NFM case studies from contrasting environments around the globe, each addressing a particular set of flood risks. Much of the research supporting the use of NFM highlights both the benefits and costs of working with natural processes to reduce flood hazards in the landscape. However, there is a lack of quantitative evidence of the effectiveness of measures, both individually and in combination, especially at the largest scales and for extreme floods. Most evidence is based on modeling studies and observations often relate to a specific set of upstream measures that are challenging to apply elsewhere.

Article

Natural Hazards and Risk Management  

Ljubica Mamula-Seadon

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Natural hazards risk management has developed in conjunction with broader risk management theory and practice. Thus, it reflects a discourse that has characterized this field, particularly in the last decades of the 20th century. Effective implementation of natural hazards risk management strategies requires an understanding of underlying assumptions inherent to specific methodologies, as well as an explication of the process and the challenges embodied in specific approaches to risk mitigation. Historical thinking on risk, as it has unfolded in the last few hundred years, has been exemplified by a juxtaposition between positivist and post-positivist approaches to risk that dominated the risk discourse in the late 20th century. Evolution of the general concept of risk and the progress of scientific rationality modified the relationship of people to natural hazard disasters. The epistemology, derived from a worldview that champions objective knowledge gained through observation and analysis of the predicable phenomena in the world surrounding us, has greatly contributed to this change of attitude. Notwithstanding its successes, the approach has been challenged by the complexity of natural hazard risk and by the requirement for democratic risk governance. The influence of civic movements and social scientists entering the risk management field led to the current approach, which incorporates values and value judgments into risk management decision making. The discourse that generated those changes can be interpreted as positivist vs. post-positivist, influenced by concepts of sustainability and resilience, and generating some common principles, particularly relevant for policy and planning. Examples from different countries, such as New Zealand, illustrate the strengths and weaknesses of the current theory and practice of natural hazards risk management and help identify challenges for the 21st century.

Article

Natural Hazards and Their Governance in Sub-Saharan Africa  

Dewald van Niekerk and Livhuwani David Nemakonde

The sub-Saharan Africa (SSA) region, along with the rest of the African continent, is prone to a wide variety of natural hazards. Most of these hazards and the associated disasters are relatively silent and insidious, encroaching on life and livelihoods, increasing social, economic, and environmental vulnerability even to moderate events. With the majority of SSA’s disasters being of hydrometeorological origin, climate change through an increase in the frequency and magnitude of extreme weather events is likely to exacerbate the situation. Whereas a number of countries in SSA face significant governance challenges to effectively respond to disasters and manage risk reduction measures, considerable progress has been made since the early 2000s in terms of policies, strategies, and/or institutional mechanisms to advance disaster risk reduction and disaster risk management. As such, most countries in SSA have developed/reviewed policies, strategies, and plans and put in place institutions with dedicated staffs and resources for natural hazard management. However, the lack of financial backing, limited skills, lack of coordination among sectors, weak political leadership, inadequate communication, and shallow natural hazard risk assessment, hinders effective natural hazard management in SSA. The focus here is on the governance of natural hazards in the sub-Saharan Africa region, and an outline of SSA’s natural hazard profile is presented. Climate change is increasing the frequency and magnitude of extreme weather events, thus influencing the occurrence of natural hazards in this region. Also emphasized are good practices in natural hazard governance, and SSA’s success stories are described. Finally, recommendations on governance arrangements for effective implementation of disaster risk reduction initiatives and measures are provided.

Article

Natural Hazards and Voting Behavior  

Olivier Rubin

Natural hazards have repercussions that reverberate to the political level. Their adverse socio-economic impacts could undermine political support from key fractions in society. Governments, aware of this, have incentives to ease the adverse social impacts of natural hazards. However, the channels of impact from natural hazards to voter and government behavior are complex, indirect, and nonlinear. More than their immediate impact, therefore, major natural hazards contain important symbolic and mythological power that can sway public opinion and influence disaster policies for years to come.

Article

Natural Hazards Governance in India  

Anshu Sharma and Sunny Kumar

India faces a very broad range of hazards due to its wide geoclimatic spread. This, combined with deep-rooted social, economic, physical, and institutional vulnerabilities, makes India one of the highest disaster-affected countries in the world. Natural hazards have gained higher visibility due to an increasing frequency and magnitude of their impact in recent decades, and efforts to manage disasters have been largely unable to keep pace with the growing incidences, scale, and complexities of disaster events. A number of mega events between 1990 and 2005, including earthquakes, cyclones, floods, and a tsunami, created momentum in decision making to look at disasters critically and to push for a shift from response to mitigation and preparedness. While efforts were put in place for appropriate legislation, institution building, and planning, these processes were long drawn out and time and resource intensive. It has taken years for the governance systems to begin showing results on the ground. While these efforts were being formulated, the changing face of disasters began to present new challenges. Between 2005 and 2015, a number of unprecedented events shook the system, underscoring the increasing variability and thus unpredictability of natural hazards as a new normal. Events in this period included cloudbursts and flash floods in the deserts, droughts in areas that are normally flood prone, abnormal hail and storm events, and floods of rare fury. To augment the shifting natural hazard landscape, urbanization and changing lifestyles have made facing disasters more challenging. For example, having entire cities run out of water is a situation that response systems are not geared to address. The future will be nothing like the past, with climate change adding to natural hazard complexities. Yet, the tools to manage hazards and reduce vulnerabilities are also evolving to unprecedented levels of sophistication. Science, people, and innovations will be valuable instruments for addressing the challenges of natural hazards in the times ahead.

Article

Natural Hazards Governance: An Overview of the Field  

Thomas A. Birkland

The field of natural hazards governance has changed substantially since the 1970s as the breadth and severity of natural hazards have grown. These changes have been driven by greater social scientific knowledge around natural hazards and disasters, and by changes in structure of natural hazards governance. The governance of issues relating to natural hazards is challenging because of the considerable complexity inherent in preparing for, responding to, mitigating, or recovering from disasters.

Article

Natural Hazards Governance in Algeria  

Djillali Benouar

Natural hazard governance has become complicated. This is because many recent disasters had the biggest impact in urban areas with a large concentration of people heavily dependent on infrastructure and services. The rapid urbanization, population increase, development of critical engineering works, industrialization of cities with modern types of buildings, and the concentration of population living in hazardous areas are matter of growing concern, as they are likely to contribute to heavier loss of life and increasing economic losses in future disaster damage. The El-Asnam (formerly Orléansville) earthquake of October 10, 1980 (Ms 7.4) raised the awareness of both the Algerian government and the civil society of the need for disaster risk reduction policy. Since then, disaster risk reduction has been on the agenda of the government programs, and concrete measures have been undertaken in organization, legislation, institutions, training, education, communication, and information. The government has made significant efforts to improve the natural hazard governance. It has made a substantial impact on academic research and higher education in some disciplines of engineering and natural science in the country’s largest universities. Risk governance for natural hazard in Algeria will be seen here in light of the implementation mechanisms, the main achievements and progress, the new legal and regulatory tools and mechanisms, and cooperation aspects. In conclusion there will be a discussion about global evaluation and perspectives.

Article

Natural Hazards Governance in Australia  

John Minnery and Iraphne Childs

Natural hazards governance varies across Australia for two critical reasons: first, the country’s large size and latitudinal range; and second, its divided federal government structure. The first feature—the magnitude and latitudinal spread—results in a number of climatic zones, from the tropical north, through the sub-tropics, to temperate southern zones and the arid central deserts. Consequently, state and local government jurisdictions must respond to different natural hazard types and variable seasonality. In addition, the El Niño-La Niña southern oscillation cycle has a strong impact. Flooding can occur throughout the continent and is the most frequent natural hazard and most extensive in scope, although extreme heat events cause the greatest number of fatalities. In summer, cyclones frequently occur in northern Australia and severe bushfires in the southeast and southwest. Hence, governance structures and disaster response mechanisms across Australia, while sharing many similarities, of necessity vary according to hazard type in different geographical locations. Climatological hazards dominate the range and occurrence of hazard events in Australia: floods, cyclones, storms, storm surge, drought, extreme heat events, and bushfire (but local landslips and earthquakes also occur). The second major reason for variation is that Australia has three formal levels of government (national, State, and local) with each having their own responsibilities and resources. The national government has constitutional powers only over matters of national importance or those which cross State boundaries. In terms of hazards governance, it can advise and support the states but is intimately involved only with major hazards. The six States have the principal constitutional responsibility for hazards planning, usually with a responsible State minister, and each can have a different approach. The strong vertical fiscal imbalance among the levels of government does give the national government powerful financial leverage. Local governments are the front-line hazards planning and management authorities, but because they represent local communities their approaches and capacities vary enormously. There are a number of ways in which the resultant potential for fragmentation is addressed. Regional groupings of local governments (usually assisted by the relevant state government) can work together. State governments collaborate through joint Ministerial meetings and policies. The intergovernmental Council of Australian Governments has produced a National Strategy for Disaster Resilience, which guides each state’s approach. Under these circumstances a clear national hierarchical chain of command is not possible, but serious efforts have been made to work collaboratively.

Article

Natural Hazards Governance in Canada  

Jack Lindsay

The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments. The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development. This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.

Article

Natural Hazards Governance in Chile  

Vicente Sandoval, Benjamin Wisner, and Martin Voss

The governance of natural hazards in Chile involves how different actors participate in all stages of managing natural hazards and their impacts. This includes monitoring and early warning systems and response to the most significant hazardous events in the country: earthquakes, tsunamis, volcanic eruptions, hydrological and meteorological events, and wildfires. Other general processes, such as disaster recovery, disaster risk reduction (DRR), and political economy and socioenvironmental processes of disaster risk creation are fundamental to understanding the complexity of natural hazard governance. Chile has a long history of disasters linked to its geographical and climatological diversity as well as its history and development path. The country has made significant advances toward an effective disaster risk management (DRM) system, which is backed up by sophisticated monitoring systems for earthquakes, tsunamis, volcanic eruptions, hydro- and meteorological events, and wildfires. These technical advances are integrated with disaster response mechanisms that include trained personnel, regulatory frameworks, institutions, and other actors, all under the direction of the National Emergency Office. The Chilean mode of DRM and DRR is characterized by a centralized, top-down approach that limits the opportunities for community organizations to participate in discussions of DRR and decision-making. It also centralizes planning of post-disaster processes such as reconstruction. Likewise, the dominant politico-economic model of Chile is neoliberalism. This development path has reproduced the root causes of disaster vulnerability through socioeconomic inequalities as well as poorly regulated urbanization and the practices of extractive industries. This has created numerous socioenvironmental conflicts throughout the Chilean territory with sometimes hazardous effects on local communities, especially indigenous groups. The governance of hazards and risk reduction in Chile still has a long way to go to secure the country’s path to sustainable human development.

Article

Natural Hazards Governance in China  

Timothy Sim and Jun Lei Yu

China is a vast country frequently impacted by multiple natural hazards. All natural disasters have been reported in China, except volcanic eruptions. Almost every region in China is threatened by at least one type of natural hazard, and the rural areas are most vulnerable, with fewer resources and less developed disaster protective measures as well as lower levels of preparedness. In the first 30 years since its establishment in 1949, the Chinese government, hindered by resource constraints, encouraged local communities to be responsible for disaster response. As the country’s economy grew exponentially, after it opened its doors to the world in the late 1970s, China’s natural hazard governance (NHG) system quickly became more top-down, with the government leading the way for planning, coordinating, directing, and allocating resources for natural disasters. The development of China’s NHG is linked to the evolution of its ideologies, legislation system, and organizational structures for disaster management. Ancient China’s disaster management was undergirded by the ideology that one accepted one’s fate passively in the event of a disaster. In contemporary China, three ideologies guide the NHG: (a) passive disaster relief characterized by “help oneself by engaging in production”; (b) active disaster management characterized by “emergency management”; and (c) optimized disaster risk governance characterized by “multiple stakeholders working together.” Meanwhile, the NHG legislation and systems have become more open, transparent, and integrated one over time. Evidenced by the unprecedented growth of social organizations and private companies that engaged in disaster-related activities during and after the 2008 Wenchuan earthquake, discussions on integrating bottom-up capacities with the top-down system have increased recently. The Chinese government started purchasing services from social organizations and engaging them in building disaster model communities (officially known as “Comprehensive Disaster Reduction Demonstration Communities”) in recent years. These are, potentially, two specific ways for social organizations to contribute to China’s NHG system development.