141-147 of 147 Results

Article

Governance is a complex, highly elastic term used in a wide range of settings which sometimes leads to ambiguity. As a result, defining natural hazards governance as a unique and specific construct is needed for conceptual clarity and analytic precision. At core, natural hazards governance pertains to two fundamental considerations: reducing risk and promoting resilience. While not always recognized as such in the hazards and disasters literature, risk reduction and resilience promotion are two pure public goods. But they are also highly complex public goods—amalgams of a series of distinct but interrelated public policy choices and the administrative systems that put those choices into effect. To understand better a logic for defining and assessing natural hazards governance it is essential to consider it as a set of explicitly collective choices over the production of a complex of public goods aimed at addressing hazards risk reduction and promoting resilience within or across defined political jurisdictions. Those choices create frameworks permitting a set of authoritative actions (lawful and legitimate) to be stated and executed by governmental entities, by non-governmental agents on their behalf (in some form), or for goods and services to be jointly co-produced by governmental and non-governmental actors. Those collective choices in a given setting are influenced by the institutional structure of formal public policy decision-making, which itself reflects variations in the political efficacy of community members, competing interests and incentives over policy preferences, and level of extant knowledge and understanding of critical challenges associated with given hazards. Those formal collective choices are also reflective of a broader cultural context shaping norms of behavior and conception of the relationship between communities and hazards.

Article

Between 50 and 70 volcanoes erupt each year—just a fraction of the 1,000 identified volcanoes that may erupt in the near future. When compared with the catastrophic loss of lives and property resulting from typhoons, earthquakes, and floods, losses from the more infrequent but equally devastating volcanic eruptions are often overlooked. Volcanic events are usually dramatic, but their various effects may occur almost imperceptibly or with horrendous speed and destruction. The intermittent nature of this activity makes it difficult to maintain public awareness of the risks. Assessing volcanic hazards and their risks remains a major challenge for volcanologists. Several generations ago, only a small, international fraternity of volcanologists was involved in the complex and sometimes dangerous business of studying volcanoes. To understand eruptions required extensive fieldwork and analysis of the eruption products—a painstaking process. Consequently, most of the world’s volcanoes had not been studied, and many were not yet even recognized. Volcano research was meagerly supported by some universities and a handful of government-sponsored geological surveys. Despite the threats posed by volcanoes, few volcanological observatories had been established to monitor their activity. Volcanology is now a global venture. Gone are the days when volcanologists were educated or employed chiefly by the industrial nations. Today, volcanologists and geological surveys are located in many nations with active volcanoes. Volcanological meetings, once limited to geologists, geophysicists, and a smattering of meteorologists and disaster planners, have greatly expanded. Initially, it was a hard sell to convince volcanologists that professionals from the “soft sciences” could contribute to the broad discipline of volcanology. However, it has become clear that involving decision makers such as urban planners, politicians, and public health professionals with volcanologists is a must when exploring and developing practical, effective volcanic-risk mitigation. Beginning in 1995, the “Cities on Volcanoes” meetings were organized to introduce an integrated approach that would eventually help mitigate the risks of volcanic eruptions. The first conference, held in Rome and Naples, Italy, encompassed a broad spectrum of topics from the fields of volcanology, geographic information systems, public health, remote sensing, risk analysis, civil engineering, sociology and psychology, civil defense, city management, city planning, education, the media, the insurance industry, and infrastructure management. The stated mission of that meeting was to “better evaluate volcanic crisis preparedness and emergency management in cities and densely populated areas.” Since that meeting nearly twenty years ago, Cities on Volcanoes meetings have taken place in New Zealand, Hawaii, Ecuador, Japan, Spain, and Mexico; the 2014 venue was Yogyakarta, Indonesia. The significant and rewarding result of these efforts is a growing connection between basic science and the practical applications needed to better understand the myriad risks as well as the possible hazard mitigation strategies associated with volcanic eruptions. While we pursue this integrated approach, we see advances in the technologies needed to evaluate and monitor volcanoes. It is impossible to visit all the world’s restless volcanoes, let alone establish effective monitoring stations for most of them. However, we can now scrutinize their thermal signatures and local ground deformation with instruments on earth-observing satellites. When precursory activity is detected by remote sensors in an area where a population is at risk, teams can be deployed for ground-based monitoring of that activity. In addition, by evaluating a volcano’s past eruption history, scientists can forecast both future activity and the possible risks to inhabitants. Using physics-based modeling, there is a better understanding of the types and severity of potential eruption phenomena such as pyroclastic flows, ash eruptions, gaseous discharge, and lava flows. Field observations of changes indicating an imminent eruption are now monitored with geophysical and geochemical instrumentation that is smaller, tougher, and more affordable. Volcanology has evolved into a broader, integrated scientific discipline, but there is much still to be accomplished. The new generation of volcanologists, who have the advantage of knowing the theoretical underpinnings of volcanic activity, can now turn to the allied endeavor of reducing risk—their aspiration for the 21st century.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Spatial and urban planning are acknowledged as important tools and processes that influence exposure to natural and technical hazards and risk accumulation, as well as risk and vulnerability reduction. Even though natural hazards (such as floods) and technical hazards have been discussed in spatial and urban planning for quite some time in various countries and regions, only in a very few cities and regions has there been a sufficient and systematic approach to establish risk management as part of the planning task within the field of spatial planning and urban land-use planning. Risk management strategies in spatial and urban planning have often been strengthened after major crises, such as severe fires in the middle ages in cities in Europe, or after major floods or hurricanes in North America, Asia, and Latin America, as well as Europe and Africa. In this context, risk management is understood as a cluster of concrete and practical strategies and actions on how to handle risks, and in terms of spatial and urban planning, including those risks that are of spatial importance or significant with regard to planning processes.

Article

Ricardo Marten, Theresa Abrassart, and Camillo Boano

The establishment of effective linkages between institutional urban planning and disaster risk strategies remains a challenge for formal governance structures. For governments at all administrative scales, disaster resilience planning has required systemic capacities that rely on structures of governance, humanitarian frameworks, and budgetary capacities. However, with growing urbanization trends, humanitarian responses and Disaster Risk Management (DRM) frameworks have had to adapt their operations in contexts with high population density, complex infrastructure systems, informal dynamics, and a broader range of actors. Urban areas concentrate an array of different groups with the capability of contributing to urban responses and strategies to cope with disaster effects, including community groups, government agencies, international organizations and humanitarian practitioners. In addition, cities have running planning structures that support their administration and spatial organization, with instruments that supply constant information about population characteristics, infrastructure capacity and potential weaknesses. Processes and data ascribed to urban planning can provide vital knowledge to natural hazard governance frameworks, from technical resources to conceptual approaches towards spatial analysis. Authorities managing risk could improve their strategic objectives if they could access and integrate urban planning information. Furthermore, a collaborative hazard governance can provide equity to multiple urban actors that are usually left out of institutional DRM, including nongovernmental organizations, academia, and community groups. Traditional top-down models can operate in parallel with horizontal arrangements, giving voice to groups with limited access to political platforms but who are knowledgeable on urban space and social codes. Their still limited recognition is evidence that there is still a disconnect between the intentions of global frameworks for inclusive governance, and the co-production of an urban planning designed for inclusive resilience.

Article

Vulnerability is complex because it involves many characteristics of people and groups that expose them to harm and limit their ability to anticipate, cope with, and recover from harm. The subject is also complex because workers in many disciplines such as public health, psychology, geography, and development studies (among others) have different ways of defining, measuring, and assessing vulnerability. Some of these practitioners focus on the short-term identification of vulnerability, so that maps and lists of people living “at risk” can be generated and used by authorities. Others are more concerned with reasons why some people are more vulnerable when facing a hazard or threat than others. Professionals working at the scale of localities are interested in methods that bring out residents’ own knowledge of hazards and help them to cooperate with each other to find ways of reducing risk. There are some interpretations of vulnerability that seek its root cause in the creation of risk by political and economic systems that make investment and locational decisions for the benefit of small elites without regard for how these decisions affect the majority. Finally, whatever success there may be in treating vulnerability in any of the ways just mentioned, it will always be a part of the human condition, and this fact in itself is puzzling.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Increasingly frequent and intense extreme climatic events are wreaking havoc in regions all over the world, not only causing immediate death and destruction, but also destroying prospects for attaining the most basic of human needs—water, food, and secure shelter. What is more, the problems brought about by extreme events are often exacerbated by ecosystem destruction due to human activities. This is a universal, global problem. Children are the most vulnerable. Insufficient and polluted water afflicts a third or more of the people of the world causing over a billion illnesses, illnesses often related to 2.5 billion people lacking sanitation, and illnesses often combined with malnutrition. In 2013, 783 million people lacked clean water. Procurement and allocation of water are major problems in rural and urban areas. More than 70% of fresh water is used for irrigation of crops, much of it lost to evaporation, and much resulting in build up of salinization on bordering farmland. Cities, now home to 54% of the world’s population, often lack adequate infrastructure to provide clean drinking water. In the United States, cities are faced with contaminated water from their pipes, as in Flint Michigan and in New Jersey schools. Naturally occurring water pollutants that can harm ecosystems, aquatic organisms, and humans are becoming more prevalent due to physical developments and climate change. For example, toxic cyanobacteria, also known as blue-green algae, in coastal and inland waters are causing mortality and morbidity in humans, livestock, and wild animals. Over the last three decades, one of these bacteria, C. raciborskii has been increasingly recognized as a public health exigency for drinking water supplies across all inhabited continents. While food today is more readily available worldwide than in the past, nearly a billion people go hungry. The roughly billion people who rely on fish from the oceans are faced with dwindling harvests due to overfishing, warming waters that harm coral reef breeding grounds, and the loss of mangrove spawning grounds. Crops and livestock are hurt by climate change. Productivity is diminished by reliance on monoculture, poor storage, and transportation problems. The situation is drastically worsened by unnecessary waste and spoilage. The world is producing more than enough food, according to the Food and Agriculture Organization of the United Nations, which says that “Recovering just half of what is lost or wasted” alone could feed the world. Regarding spoilage, aflatoxins—poisonous, cancer-causing chemicals produced by certain molds—are found in spoiled food, including staples such as corn, millet, peanuts, and wheat, affecting not only immediate consumers, but also those who buy processed food. Droughts causing dead livestock and wilted crops have driven millions from their homes and farmland, as happened in Syria. Subsequent conflict led millions of Syrians to become both political and climate refugees, living in refugee camps and traveling thousands of treacherous miles to resettle. Poverty, whether experienced in slums, refugee camps, or other rural and urban settings, causes lack of land and shortages of material for soundly built housing that can withstand weather changes, even screens to help reduce exposure to mosquitoes, flies, and other disease vectors. The nearly quarter of the world’s urban population who live in slums live mostly in overcrowded, unsafe shelters that lack structural security, water for drinking, cooking, and hygiene, and sanitation. They are exposed to communicable diseases and suffer mental stress. Community space, adequate education, and chances for employment or a way out of the slums are rare. In numerous coastal communities, houses are endangered by extreme weather conditions exasperated by climate change. The sea’s rise in India has caused river delta islands to vanish. In 2016, the first climate refugees in the United States, an entire community of Native American Indians, are being forced to move from their ancestral homes on Isle de Jean Charles, Louisiana. The present challenges are aggravated by climate change, population growth, and forced migration. It is critical to focus on these basic, inextricably interlocked needs for water, food, and secure shelter, with a view to preventive measures, and to do so with extreme sensitivity to cultures, communities, ecosystems, and ramifications to human health.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Today, women are widely recognized around the world as leaders, innovators, and trailblazers in promoting important agendas to uplift society. Mother Teresa’s charitable work is one example, and Malala Yousafzai’s work on children’s rights is another. Both are Nobel Peace Prize awardees. The dramatic shift, from regarding women as simply a homogenous group to seeing a growing number of women at the forefront of advancing innovative ways to build safe and resilient communities, has been embraced. Women’s constructive role in development on many fronts and at various levels is celebrated globally. Their capacities, tempered by compassion and sharpened by tenacity, contribute significantly to further strengthening their own resilience, as well as the resilience of their communities. In the world of disaster risk reduction and development, women have become vanguards in promoting good disaster risk reduction governance. The role of women (as individuals or as members and leaders of civil society organizations) in advocating for the mitigation, or even elimination, of disaster risks has become more pronounced as they bear the double burden of caring for home and community. That women now speak with greater authority on disaster risk reduction, environmental governance, or sustainable development in the larger public sphere, is a testament to their hard-won victory in making the world sit up and listen to those whose voices are least heard—including theirs.