1-7 of 7 Results  for:

  • Glacial Lake Outburst (GLOFs) x
Clear all

Article

Assessment Principles for Glacier and Permafrost Hazards in Mountain Regions  

Simon Allen, Holger Frey, Wilfried Haeberli, Christian Huggel, Marta Chiarle, and Marten Geertsema

Glacier and permafrost hazards in cold mountain regions encompass various flood and mass movement processes that are strongly affected by rapid and cumulative climate-induced changes in the alpine cryosphere. These processes are characterized by a range of spatial and temporal dimensions, from small volume icefalls and rockfalls that present a frequent but localized danger to less frequent but large magnitude process chains that can threaten people and infrastructure located far downstream. Glacial lake outburst floods (GLOFs) have proven particularly devastating, accounting for the most far-reaching disasters in high mountain regions globally. Comprehensive assessments of glacier and permafrost hazards define two core components (or outcomes): 1. Susceptibility and stability assessment: Identifies likelihood and origin of an event based on analyses of wide-ranging triggering and conditioning factors driven by interlinking atmospheric, cryospheric, geological, geomorphological, and hydrological processes. 2. Hazard mapping: Identifies the potential impact on downslope and downstream areas through a combination of process modeling and field mapping that provides the scientific basis for decision making and planning. Glacier and permafrost hazards gained prominence around the mid-20th century, especially following a series of major disasters in the Peruvian Andes, Alaska, and the Swiss Alps. At that time, related hazard assessments were reactionary and event-focused, aiming to understand the causes of the disasters and to reduce ongoing threats to communities. These disasters and others that followed, such as Kolka Karmadon in 2002, established the fundamental need to consider complex geosystems and cascading processes with their cumulative downstream impacts as one of the distinguishing principles of integrative glacier and permafrost hazard assessment. The widespread availability of satellite imagery enables a preemptive approach to hazard assessment, beginning with regional scale first-order susceptibility and hazard assessment and modeling that provide a first indication of possible unstable slopes or dangerous lakes and related cascading processes. Detailed field investigations and scenario-based hazard mapping can then be targeted to high-priority areas. In view of the rapidly changing mountain environment, leading beyond historical precedence, there is a clear need for future-oriented scenarios to be integrated into the hazard assessment that consider, for example, the threat from new lakes that are projected to emerge in a deglaciating landscape. In particular, low-probability events with extreme magnitudes are a challenge for authorities to plan for, but such events can be appropriately considered as a worst-case scenario in a comprehensive, forward-looking, multiscenario hazard assessment.

Article

Future Lake Development in Deglaciating Mountain Ranges  

Wilfried Haeberli and Fabian Drenkhan

Continued retreat and disappearance of glaciers cause fundamental changes in cold mountain ranges and new landscapes to develop, and the consequences can reach far beyond the still ice-covered areas. A key element is the formation of numerous new lakes where overdeepened parts of glacier beds become exposed. With the first model results from the Swiss Alps around 2010 of distributed glacier thicknesses over entire mountain regions, the derivation of glacier beds as potential future surface topographies became possible. Since then, climate-, water-, and hazard-related quantitative research about future lakes in deglaciating mountains all over the world rapidly evolved. Currently growing and potential future open water bodies are part of new environments in marked imbalance. The surrounding steep icy slopes and peaks are affected by glacial debuttressing and permafrost degradation, with associated long-term stability reduction. This makes the new lakes potential sources of far-reaching floods or debris flows, and they represent serious multipliers of hazards and risks to down-valley humans and their infrastructure. Such hazard and risk aspects are also of primary importance where the lakes potentially connect with hydropower production, freshwater supply, tourism, cultural values, and landscape protection. Planning for sustainable adaptation strategies optimally starts from the anticipation in space and time of possible lake formation in glacier-covered areas by numerical modeling combined with analyses of ice-morphological indications. In a second step, hazards and risks related to worst-case scenarios of possible impact and flood waves must be assessed. These results then define the range of possibilities for use and management of future lakes. Careful weighing of both potential synergies and conflicts is necessary. In some cases, multipurpose projects may open viable avenues for combining solutions related to technical challenges, safety requirements, funding problems, and societal acceptance. Successful implementation of adaptive projects requires early integration of technical-scientific and local knowledge, including the needs and interests of local users and decision makers, into comprehensive, participatory, and long-term planning. A key question is the handling of risks from extreme events with disastrous damage potential and low but increasing probability of occurrence. As future landscapes and lakes develop rapidly and are of considerable socioeconomic and political interest, they present often difficult and complex situations for which solutions must be found soon. Related transdisciplinary work will need to adequately address the sociocultural, economic, and political aspects.

Article

Glacier Retreat and Glacial Lake Outburst Floods (GLOFs)  

Adam Emmer

Glacier retreat is considered to be one of the most obvious manifestations of recent and ongoing climate change in the majority of glacierized alpine and high-latitude regions throughout the world. Glacier retreat itself is both directly and indirectly connected to the various interrelated geomorphological/hydrological processes and changes in hydrological regimes. Various types of slope movements and the formation and evolution of lakes are observed in recently deglaciated areas. These are most commonly glacial lakes (ice-dammed, bedrock-dammed, or moraine-dammed lakes). “Glacial lake outburst flood” (GLOF) is a phrase used to describe a sudden release of a significant amount of water retained in a glacial lake, irrespective of the cause. GLOFs are characterized by extreme peak discharges, often several times in excess of the maximum discharges of hydrometeorologically induced floods, with an exceptional erosion/transport potential; therefore, they can turn into flow-type movements (e.g., GLOF-induced debris flows). Some of the Late Pleistocene lake outburst floods are ranked among the largest reconstructed floods, with peak discharges of up to 107 m3/s and significant continental-scale geomorphic impacts. They are also considered capable of influencing global climate by releasing extremely high amounts of cold freshwater into the ocean. Lake outburst floods associated with recent (i.e., post-Little Ice Age) glacier retreat have become a widely studied topic from the perspective of the hazards and risks they pose to human society, and the possibility that they are driven by anthropogenic climate change. Despite apparent regional differences in triggers (causes) and subsequent mechanisms of lake outburst floods, rapid slope movement into lakes, producing displacement waves leading to dam overtopping and eventually dam failure, is documented most frequently, being directly (ice avalanche) and indirectly (slope movement in recently deglaciated areas) related to glacial activity and glacier retreat. Glacier retreat and the occurrence of GLOFs are, therefore, closely tied, because glacier retreat is connected to: (a) the formation of new, and the evolution of existing, lakes; and (b) triggers of lake outburst floods (slope movements).

Article

GLOF Risk Management Experiences and Options: A Global Overview  

Laura Niggli, Simon Allen, Holger Frey, Christian Huggel, Dmitry Petrakov, Zhanar Raimbekova, John Reynolds, and Weicai Wang

The prevalence and impacts of glacier lake outburst floods (GLOFs) in all glacierized mountain ranges globally underlines the importance of GLOF disaster risk management (DRM). A large variety of types of GLOF DRM measures exists, targeting the reduction of the hazard of a potential GLOF, of the exposure, or of the vulnerability of people and infrastructure. A wide range of such measures have been implemented in different mountain regions all over the world since the mid 20th century. While many of these measures have been reported, there are relevant gaps in the systematic documentation, analysis, and evaluation of GLOF DRM measures globally. A comprehensive compilation, classification and evaluation of GLOF DRM measures is required to establish a guidance for best practice approaches. DRM measures aiming at a reduction of the hazard component are typically structural measures, while vulnerability is addressed mainly by nonstructural measures. Hazard and exposure reduction measures cover all temporal ranges from short- to long-term interventions. The design and implementation of GLOF DRM measures is demanding due to harsh environmental conditions, remoteness, and rapidly changing hazard and risk situations on the one hand. Institutional and organizational aspects related to the funding, planning, and implementation of such measures, on the other hand, pose further challenges to successful GLOF DRM.

Article

The Human Ecology of Disaster Risk in Cold Mountainous Regions  

Kenneth Hewitt

A range of environmental and social dimensions of disasters occur in or are affected by the mountain cryosphere (MC). Core areas have glaciers and permafrost, intensive freeze-thaw, and seasonally abundant melt waters. A variety of cryospheric hazards is involved, their dangers magnified by steep, high, and rugged terrain. Some unique threats are snow or ice avalanches and glacial lake outburst floods. These highlight the classic alpine zones, but cryospheric hazards occur in more extensive parts of mountain ecosystems, affecting greater populations and more varied settings. Recently, habitat threats have become identified with global climate warming: receding glaciers, declining snowfall, and degrading permafrost. Particularly dangerous prospects arise with changing hazards in the populous mid-latitude and tropical high mountains. Six modern calamities briefly introduce the kinds of dangers and human contexts engaged. Disaster style and scope differs between events confined to the MC, others in which it is only a part or is a source of dangerous processes that descend into surrounding lowlands. The MC is also affected by non-cryospheric hazards, notably earthquake and volcanism. In human terms, the MC shares many disaster risk issues with other regions. Economy and land use, poverty or gender, for instance, are critical aspects of exposure and protections, or lack of them. This situates disaster risk within human ecological and adaptive relations to the predicaments of cold and steepland terrain. A great diversity of habitats and cultures is recognized. “Verticality” offers a unifying theme; characterizing the MC through ways in which life forms, ecosystems, and human settlement adjust to altitudinal zones, to upslope transitions, and the downslope cascades of moisture and geomorphic processes. These also give special importance to multi-hazard chains and long-runout processes including floods. Traditional mountain cultures exploit proximity and seasonality of different resources in the vertical, and avoidance of steepland dangers. This underscores sustainability and changing risk for the many surviving agro-pastoral and village economies and the special predicaments of indigenous cultures. Certain common stereotypes, such as remoteness or fragility of mountain habitats, require caution. They tend to overemphasize environmental determinism and underestimate social factors. Nor should they lead to neglect of wealthier, modernized areas, which also benefit most from geophysical research, dedicated agencies, and expert systems. However, modern developments now affect nearly all MC regions, bringing expanding dangers as well as benefits. Threats related to road networks are discussed, from mining and other large-scale resource extraction. Disaster losses and responses are also being rapidly transformed by urbanization. More broadly, highland–lowland relations can uniquely affect disaster risk, as do transboundary issues and initiatives in the mountains stemming from metropolitan centers. Anthropogenic climate warming generates dangers for mountain peoples but originates mainly from lowland activities. The extent of armed conflict affecting the MC is exceptional. Conflicts affect all aspects of human security. In the mountains as most other places, disaster risk reduction (DRR) policies have tended to favor emergency response. A human ecological approach emphasizes the need to pursue avoidance strategies, precautionary and capacity-building measures. Fundamental humanitarian concerns are essential in such an approach, and point to the importance of good governance and ethics.

Article

Observation and Spatial Modeling of Snow- and Ice-Related Mass Movement Hazards  

Martin Mergili

Snow- and ice-related hazardous processes threaten society in tropical to high-latitude mountain areas worldwide and at highly variable time scales. On the one hand, small snow avalanches are recorded in high numbers every winter. On the other hand, glacial lake outburst floods (GLOFs) or large-scale volcano–ice interactions occur less frequently but may evolve into destructive process chains resulting in major disasters. These extreme examples document the huge field of types, magnitudes, and frequencies of snow- and ice-related hazardous processes. Mountain societies have learned to cope with natural hazards for centuries, guided by personal experiences and oral and written tradition. Historical records are today still important as a basis to mitigate snow- and ice-related hazards. They are complemented by a broad array of observation and modeling techniques. These techniques differ among themselves with regard to (1) the type of process under investigation and (2) the scale and purpose of investigation. Multi-scale monitoring and warning systems for snow avalanches are in operation in densely populated mid-latitude mountain areas. They build on meteorological and snow profile data in combination with a large pool of expert knowledge. In contrast, ice-related processes such as ice- or rock-ice avalanches, GLOFs, or associated process chains cause damage less frequently in space and time, so that societies are less well adapted. Even though the hazard sources are often far from the society—making field observation challenging—flows travelling for tens of kilometers sometimes impact populated areas. These hazards are strongly influenced by climate change–induced glacier and permafrost dynamics. On the regional or national scale, the evolution of such hazards has to be monitored at short intervals through aerial and satellite imagery and terrain data, employing geographic information systems (GIS). Known hazardous situations have to be monitored in the field. Physical models—applied either in the laboratory or at real-world sites—are employed to explore the mobility of hazardous processes. Since the 1950s, however, computer models have increasingly gained importance in exploring possible travel distances, impact areas, velocities, and impact forces of events. While simple empirical-statistical approaches are used at broad scales in combination with GIS, advanced numeric models are applied to analyze specific case studies. However, the input parameters for these models are uncertain so that (1) the model results have to be validated with observations and (2) appropriate strategies to deal with the uncertainties have to be applied before using the model results for hazard zoning or dimensioning of protective structures. Due to rapid atmospheric warming and related changes in the cryosphere, hazard situations beyond historical experiences are expected to be increasingly relevant in the future. Scenario-based modeling of complex systems and process chains therefore represents an emerging research direction.

Article

Permafrost-Related Geohazards and Infrastructure Construction in Mountainous Environments  

Lukas U. Arenson and Matthias Jakob

Mountain environments, home to about 12% of the global population and covering nearly a quarter of the global land surface, create hazardous conditions for various infrastructures. The economic and ecologic importance of these environments for tourism, transportation, hydropower generation, or natural resource extraction requires that direct and indirect interactions between infrastructures and geohazards be evaluated. Construction of infrastructure in mountain permafrost environments can change the ground thermal regime, affect gravity-driven processes, impact the strength of ice-rich foundations, or result in permafrost aggradation via natural convection. The severity of impact, and whether permafrost will degrade or aggrade in response to the construction, is a function of numerous parameters including climate change, which needs to be considered when evaluating the changes in existing or formation of new geohazards. The main challenge relates to the uncertainties associated with the projections of medium- (decadal) and long-term (century-scale) climate change. A fundamental understanding of the various processes at play and a good knowledge of the foundation conditions is required to ascertain that infrastructure in permafrost environment functions as intended. Many of the tools required for identifying geohazards in the periglacial and appropriate risk management strategies are already available.