1-9 of 9 Results  for:

  • Climate Change x
Clear all

Article

Adapting to Climate Sensitive Hazards through Architecture  

Allison Hoadley Anderson

In architecture, mitigation reduces the magnitude of climate change by reducing demand for resources; anticipatory adaptation improves performance against hazards; and planned adaptation creates policies and codes to support adaptation. Adaptation prepares for a future with intensifying climate conditions. The built environment must prepare for challenges that may be encountered during the service life of the building, and reduce human exposure to hazards. Structures are responsible for about 39% of the primary energy consumption worldwide and 24% of the greenhouse gas emissions, significantly contributing to the causes of climate change. Measures to reduce demand in the initial construction and over the life cycle of the building operation directly impact the climate. Improving performance against hazards requires a suite of modifications to counter specific threats. Adaptation measures may address higher temperatures, extreme precipitation, stormwater flooding, sea-level rise, hurricanes, drought, soil subsidence, wildfires, extended pest ranges, and multiple hazards. Because resources to meet every threat are inadequate, actions with low costs now which offer high benefits under a range of predicted future climates become high-priority solutions. Disaster risk is also reduced by aligning policies for planning and construction with anticipated hazards. Climate adaptation policies based on the local effects of climate change are a new tool to communicate risk and share resources. Building codes establish minimum standards for construction, so incorporating adaptation strategies into codes ensures that the resulting structures will survive a range of uncertain futures.

Article

Agenda Setting and Natural Hazards  

Rob A. DeLeo

Agenda setting describes the process through which issues are selected for consideration by a decision-making body. Among the myriad of issues policymakers can consider, few are more vexing than natural hazards. By aggregating (or threatening to aggregate) death, destruction, and economic loss, natural hazards represent a serious and persistent threat to public safety. While citizens rightfully expect policymakers to protect them, many of the policy challenges associated natural hazards fail to reach the crowded government agenda. This article reviews the literature on agenda setting and natural hazards, including the strain between preparing for emerging hazards, on the one hand, and responding to existing disasters, on the other hand. It considers the extent to which natural hazards pose distinctive difficulties during the agenda-setting process, focusing specifically on the dynamics of issue identification, problem definition, venue shopping, and interest group mobilization in natural hazard domains. It closes by suggesting a number of future avenues of agenda-setting research.

Article

Assessment and Adaptation to Climate Change-Related Flood Risks  

Brenden Jongman, Hessel C. Winsemius, Stuart A. Fraser, Sanne Muis, and Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.

Article

Community-Based Disaster Risk Reduction  

Rajib Shaw

Community-based approaches existed even before the existence of the state and its formal governance structure. People and communities used to help and take care of each other’s disaster needs. However, due to the evolution of state governance, new terminology of community-based disaster risk reduction (CBDRR) has been coined to help communities in an organized way. Different stakeholders are responsible for community-based actions; the two key players are the local governments and civil society, or nongovernment organizations. Private sector and academic and research institutions also play crucial roles in CBDRR. Many innovative CBDRR practices exist in the world, and it is important to analyze them and learn the common lessons. The key to community is its diversity, and this should be kept in mind for the CBDRR. There are different entry points and change agents based on the diverse community. It is important to identify the right change agent and entry point and to develop a sustainable mechanism to institutionalize CBDRR activities. Social networking needs to be incorporated for effective CBDRR.

Article

Evolution of Strategic Flood Risk Management in Support of Social Justice, Ecosystem Health, and Resilience  

Paul Sayers

Throughout history, flood management practice has evolved in response to flood events. This heuristic approach has yielded some important incremental shifts in both policy and planning (from the need to plan at a catchment scale to the recognition that flooding arises from multiple sources and that defenses, no matter how reliable, fail). Progress, however, has been painfully slow and sporadic, but a new, more strategic, approach is now emerging. A strategic approach does not, however, simply sustain an acceptable level of flood defence. Strategic Flood Risk Management (SFRM) is an approach that relies upon an adaptable portfolio of measures and policies to deliver outcomes that are socially just (when assessed against egalitarian, utilitarian, and Rawlsian principles), contribute positively to ecosystem services, and promote resilience. In doing so, SFRM offers a practical policy and planning framework to transform our understanding of risk and move toward a flood-resilient society. A strategic approach to flood management involves much more than simply reducing the chance of damage through the provision of “strong” structures and recognizes adaptive management as much more than simply “wait and see.” SFRM is inherently risk based and implemented through a continuous process of review and adaptation that seeks to actively manage future uncertainty, a characteristic that sets it apart from the linear flood defense planning paradigm based upon a more certain view of the future. In doing so, SFRM accepts there is no silver bullet to flood issues and that people and economies cannot always be protected from flooding. It accepts flooding as an important ecosystem function and that a legitimate ecosystem service is its contribution to flood risk management. Perhaps most importantly, however, SFRM enables the inherent conflicts as well as opportunities that characterize flood management choices to be openly debated, priorities to be set, and difficult investment choices to be made.

Article

Impact of Climate Change on Agriculture Adaptation in Coastal Zones of Bangladesh  

Umma Habiba and Md. Anwarul Abedin

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Bangladesh scored seventh in a ranking of countries most affected by climatic calamities in the second decade of the 21st century. Climate change poses a great threat to Bangladesh’s economy due to its effect on the agricultural system. The agriculture sector employs about 40.6% of the country’s labor force and contributes 14.1% of the gross domestic product (GDP). Various climatic factors such as changes in precipitation, temperature, sea level rise, salinity intrusion, drought, and natural disasters (storm surges, cyclones, etc.) impact the agriculture sector. These factors ultimately affect crop production and increase food insecurity. The coastal zone frequently suffers the impacts of climate change through coastal flooding, cyclones, storm surges, drought, salinity intrusion, water-logging, and so forth. These crises not only affect agricultural productivity but also lead to degradation of soil productivity and lower agricultural production/yield. To cope with the impacts on coastal agriculture, government, nongovernmental organizations, and communities have practiced a number of adaptation measures. They have adopted several measures such as using stress-tolerant rice varieties; crops that consume less water; short-duration crops; crop diversification; crop rotation; mix cropping/intercropping; efficient use of irrigation, fertilizer, and pesticides; soil conservation; floating gardens; sorjan cultivation; homestead vegetable gardening; and the re-excavation of canals. However, these adaptive practices are responsive and timely immediately after the occurrence of the effects of climate change. Taking this into consideration, it is imperative to scale up these adaptation measures and to synchronize efforts at various levels for their successful implementation by coastal communities in order to cope with climate change in a sustainable manner.

Article

Lessons on Risk Governance From the UNISDR Experience  

Sálvano Briceño

In the context of this article, risk governance addresses the ways and means—or institutional framework—to lead and manage the issue of risk related to natural phenomena, events, or hazards, also referred to popularly, although incorrectly, as “natural disasters.” At the present time, risk related to natural phenomena includes a major focus on the issue of climate change with which it is intimately connected, climate change being a major source of risk. To lead involves mainly defining policies and proposing legislation, hence proposing goals, conducting, promoting, orienting, providing a vision—namely, reducing the loss of lives and livelihoods as part of sustainable development—also, raising awareness and educating on the topic and addressing the ethical perspective that motivates and facilitates engagement by citizens. To manage involves, among other things, proposing organizational and technical arrangements, as well as regulations allowing the implementation of policies and legislation. Also, it involves monitoring and supervising such implementation to draw further lessons to periodically enhance the policies, legislation, regulations, and organizational and technical arrangements. UNISDR (now known as UNDRR) was established in 2000 to promote and facilitate risk reduction, becoming in a few years one of the main promoters of risk governance in the world and the main global advocate from within the United Nations system. It was an honor to serve as the first director of the UNISDR (2001–2011). A first lesson to be drawn from this experience was the need to identify, understand, and address the obstacles not allowing the implementation of what seems to be obvious to the scientific community but of difficult implementation by governments, private sector, and civil society; and alternatively, the reasons for shortcomings and weaknesses in risk governance. A second lesson identified was that risk related to natural phenomena also provides lessons for governance related to other types of risk in society—environmental, financial, health, security, and so on, each a separate and specialized topic, sharing, however, common risk governance approaches. A third lesson was the relevance of understanding leadership and management as essential components in governance. Drawing lessons on one’s own experience is always risky as it involves some subjectivity in the analysis. In the article, the aim has, nonetheless, been at the utmost objectivity on the essential learnings in having conducted the United Nations International Strategy for Disaster Reduction—UNISDR—from 2001 to around 2009 when leading and managing was shared with another manager, as I prepared for retirement in 2011. Additional lessons are identified, including those related to risk governance as it is academically conceived, hence, what risk governance includes and how it has been implemented by different international, regional, national, and local authorities. Secondly, I identify those lessons related to the experience of leading and managing an organization focused on disaster risk at the international level and in the context of the United Nations system.

Article

Megacity Disaster Risk Governance  

James K. Mitchell

Megacity disaster risk governance is a burgeoning interdisciplinary field that seeks to encourage improved public decision-making about the safety and sustainability of the world’s largest urban centers in the face of environmental threats ranging from floods, storms, earthquakes, wildfires, and pandemics to the multihazard challenges posed by human-forced climate change. It is a youthful, lively, contested, ambitious and innovative endeavor that draws on research in three separate but overlapping areas of inquiry: disaster risks, megacities, and governance. Toward the end of the 20th century, each of these fields underwent major shifts in thinking that opened new possibilities for action. First, the human role in disaster risks came to the fore, giving increased attention to humans as agents of risk creation and providing increased scope for inputs from social sciences and humanities. Second, the scale, complexity, and political–economic salience of very large cities attained high visibility, leading to recognition that they are also sites of unprecedented risks, albeit with significant differences between rapidly growing poorer cities and slower growing affluent ones. Third, the concept of public decision-making expanded beyond its traditional association with actions of governments to include contributions from a wide range of nongovernmental groups that had not previously played prominent roles in public affairs. At least three new conceptions of megacity disaster risk governance emerged out of these developments. They include adaptive risk governance, smart city governance, and aesthetic governance. Adaptive risk governance focuses on capacities of at-risk communities to continuously adjust to dynamic uncertainties about future states of biophysical environments and human populations. It is learning-centered, collaborative, and nimble. Smart city governance seeks to harness the capabilities of new information and communication technologies, and their associated human institutions, to the increasingly automated tasks of risk anticipation and response. Aesthetic governance privileges the preferences of social, scientific, design, or political elites and power brokers in the formulation and execution of policies that bear on risks. No megacity has yet comprehensively or uniformly adopted any of these risk governance models, but many are experimenting with various permutations and hybrid variations that combine limited applications with more traditional administrative practices. Arrangements that are tailor-made to fit local circumstances are the norm. However, some version of adaptive risk governance seems to be the leading candidate for wider adoption, in large part because it recognizes the need to continuously accommodate new challenges as environments and societies change and interact in ways that are difficult to predict. Although inquiries are buoyant, there remain many unanswered questions and unaddressed topics. These include the differential vulnerability of societal functions that are served by megacities and appropriate responses thereto; the nature and biases of risk information transfers among different types of megacities; and appropriate ways of tackling ambiguities that attend decision-making in megacities. Institutions of megacity disaster risk governance will take time to evolve. Whether that process can be speeded up and applied in time to stave off the worst effects of the risks that lie ahead remains an open question.

Article

Social Capital and Natural Hazards Governance  

Daniel P. Aldrich, Michelle A. Meyer, and Courtney M. Page-Tan

The impact of disasters continues to grow in the early 21st century, as extreme weather events become more frequent and population density in vulnerable coastal and inland cities increases. Against this backdrop of risk, decision-makers persist in focusing primarily on structural measures to reduce losses centered on physical infrastructure such as berms, seawalls, retrofitted buildings, and levees. Yet a growing body of research emphasizes that strengthening social infrastructure, not just physical infrastructure, serves as a cost-effective way to improve the ability of communities to withstand and rebound from disasters. Three distinct kinds of social connections, including bonding, bridging, and linking social ties, support resilience through increasing the provision of emergency information, mutual aid, and collective action within communities to address natural hazards before, during, and after disaster events. Investing in social capital fosters community resilience that transcends natural hazards and positively affects collective governance and community health. Social capital has a long history in social science research and scholarship, particularly in how it has grown within various disciplines. Broadly, the term describes how social ties generate norms of reciprocity and trust, allow collective action, build solidarity, and foster information and resource flows among people. From education to crime, social capital has been shown to have positive impacts on individual and community outcomes, and research in natural hazards has similarly shown positive outcomes for individual and community resilience. Social capital also can foster negative outcomes, including exclusionary practices, corruption, and increased inequality. Understanding which types of social capital are most useful for increasing resilience is important to move the natural hazards field forward. Many questions about social capital and natural hazards remain, at best, partially answered. Do different types of social capital matter at different stages of disaster—e.g., mitigation, preparedness, response, and recovery? How do social capital’s effects vary across cultural contexts and stratified groups? What measures of social capital are available to practitioners and scholars? What actions are available to decision-makers seeking to invest in the social infrastructure of communities vulnerable to natural hazards? Which programs and interventions have shown merit through field tests? What outcomes can decision-makers anticipate with these investments? Where can scholars find data sets on resilience and social capital? The current state of knowledge about social capital in disaster resilience provides guidance about supporting communities toward more resilience.