1-10 of 10 Results  for:

  • Case Studies x
Clear all

Article

Challenges for Natural Hazard and Risk Management in Mountain Regions of Europe  

Margreth Keiler and Sven Fuchs

European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps. Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.

Article

Disaster and Response in an Experiment Called New Orleans, 1700s–2000s  

Richard Campanella

As an urbanized river-dominated delta, New Orleans, Louisiana, ranks among the most experimental of cities, a test of whether the needs of a stable human settlement can coexist with the fluidity of a deltaic environment—and what happens when they do not. That natural environment bestowed upon New Orleans numerous advantages, among them abundant fresh water, fertile soils, productive wetlands and, above all, expedient passage between maritime and continental realms. But with those advantages came exposure to potential hazards—an overflowing Mississippi River, a tempestuous Gulf of Mexico, sinking soils, eroding coasts, rising seas, biotic invasion, pestilence, political and racial discord, conflagration—made all the worse by the high levels of social vulnerability borne by all too many members of New Orleans’ population. More so than any other major metropolis on the North American continent, this history of disaster and response is about the future of New Orleans as much as it is about the past. This article examines two dozen disasters of various types and scales, with origins oftentimes traceable to anthropogenic manipulation of the natural environment, and assesses the nature of New Orleans’ responses. It frames these assessments in the “risk triangle” framework offered by David Crichton and other researchers, which views urban risk as a function of hazard, exposure, and vulnerability. “Hazard” implies the disastrous event or trauma itself; “exposure” means human proximity to the hazard, usually in the form of settlement patterns, and “vulnerability” indicates individuals’ and communities’ ability to respond resiliently and adaptively—which itself is a function of education, income, age, race, language, social capital, and other factors—after having been exposed to a hazard.

Article

Impact of Climate Change on Flood Factors and Extent of Damages in the Hindu Kush Region  

Atta-ur Rahman, Shakeel Mahmood, Mohammad Dawood, Ghani Rahman, and Fang Chen

This chapter analyzes the impacts of climate change on flood factors and extent of associated damages in the Hindu Kush (HK) region. HK mountains system is located in the west of the Himalayas and Karakorum. It is the greatest watershed of the River Kabul, River Chitral, River Panjkora, and River Swat in the eastern Hindu Kush and River Amu in western Hindu Kush. The Hindu Kush system hosts numerous glaciers, snow-clad mountains, and fertile river valleys; it also supports large populations and provides year-round water to recharge streams and rivers. The study region is vulnerable to a wide range of hazards including floods, earthquakes, landslides, desertification, and drought. Flash floods and riverine floods are the deadliest extreme hydro-meteorological events. The upper reaches experience characteristics of flash flooding, whereas the lower reach is where river floods occur. Flash floods are more destructive and sudden. Almost every year in summer, monsoonal rainfall and high temperature join hands with heavy melting of glaciers and snow accelerating discharge in the river system. In the face of climate change, a significant correlation between rainfall patterns, trends in temperature, and resultant peaks in river discharge have been recorded. A rising trend was found in temperature, which leads to early and rapid melting of glaciers and snow in the headwater region. The analysis reveals that during the past three decades, radical changes in the behavior of numerous valley glaciers have been noted. In addition, the spatial and temporal scales of violent weather events have been growing, since the 1980s. Such changes in water regimes including the frequent but substantial increase in heavy precipitation events and rapid melting of snow in the headwater region, siltation in active channels, excessive deforestation, and human encroachments onto the active flood channel have further escalated the flooding events. The HK region is beyond the reach of existing weather RADAR network, and hence forecasting and early warning is ineffective. Here, almost every year, the floods cause damages to infrastructure, scarce farmland, and sources of livelihood.

Article

Involving People in Informal Settlements in Natural Hazards Governance Based on South African Experience  

Catherine Sutherland

Natural hazard governance in countries in the Global South is shifting from a state-centered approach, which has predominantly focused on disaster risk management, with limited involvement of citizens, and a disaster response to a hazard event, to an approach which is more participatory, inclusive and proactive. This emerging approach aims to be transformative, as it draws on the knowledge and skills of multiple actors, including community members; focuses on risk reduction and adaptation; and builds new models of participatory risk governance at the local and city scale. Progressive legislation has played a major role in supporting this evolution toward a more transformative approach to natural hazard governance, which recognizes the political economy and political ecology of risk. This includes acknowledging the vulnerability of communities in particular contexts, and the need to address development deficits to build resilience in the face of natural hazards. However, a significant gap exists between progressive legislation and policy, and implementation. Informal settlements experience some of the worst impacts of natural hazards due to their exposure, vulnerability, and social and political marginalization. However, they are also resilient and adaptive, developing innovative approaches in partnership with the state and other actors, to plan for and respond to natural hazards. Empirical research on particular case studies where these shifts in governance are evident, is necessary to explore the opportunities for and barriers to transformative, participatory natural hazard governance in cities in the South.

Article

Livelihoods in Bangladesh Floodplains  

Parvin Sultana and Paul Thompson

Floodplains are ecologically diverse and important sources of livelihood for rural people. Bangladesh is one of the most floodplain-dominated countries and supports the highest density of rural population in the world. The experience of Bangladesh in floodplain management efforts provides evidence, lessons, and insights on a range of debates and advances in the management of floodplain natural resources, the challenges of climate change, and the role of local communities in sustaining these resources and thereby their livelihoods. Although floodplain areas are primarily used for agriculture, the significance and value of wild common natural resources—mainly fish and aquatic plants—as sources of income and nutrition for floodplain inhabitants has been underrecognized in the past, particularly with respect to poorer households. For example, capture fisheries—a common resource—have been adversely impacted by the building of embankments and sluice gates and by the conversion of floodplains into aquaculture farms, which also exclude poor subsistence users from wetland resources. More generally, an overreliance on engineering “solutions” to flooding that focused on enabling more secure rice cultivation was criticized, particularly in the early 1990s during the Flood Action Plan, for being top down and for ignoring some of the most vulnerable people who live on islands in the braided main rivers. Coastal embankments have also been found to have longer term environmental impacts that undermine their performance because they constrain rivers, which silt up outside these polders, contributing, along with land shrinkage, to drainage congestion. Locals responded in an innovative way by breaking embankments to allow flood water and silt deposition in to regain relative land levels. Since the early 1990s Bangladesh has adopted a more participatory approach to floodplain management, piloting and then expanding new approaches; these have provided lessons that can be more general applied within Asia and beyond. Participatory planning for water and natural resource management has also been adopted at the local level. Good practices have been developed to ensure that disadvantaged, poor stakeholders can articulate their views and find consensus with other local stakeholders. The management of smaller water-control projects (up to 1,000 ha) has been taken on by community organizations, and in larger water-control projects, there is collaborative management (also called “co-management”) among a hierarchy of groups and associations and the appropriate government agency. In fishery and wetland management, many areas have been managed by community organizations to sustainably restore common resources, although their rights to do this were lost in some cases. Associated with community management are successful experiments in adopting a more system-based approach, called “integrated floodplain management,” which balances the needs of agriculture and common natural resources, for example, by adopting crops with lower water demands that are resilient to less predictable rainfall and drier winters, and enable communities to preserve surface water for wild aquatic resources. Bangladesh also has had success in demonstrating the benefits of systematic learning among networks of community organizations, which enhances innovation and adaptation to the ever-changing environmental challenges in floodplains.

Article

Measuring Flood Discharge  

Marian Muste and Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.

Article

Natural Hazards Governance in China  

Timothy Sim and Jun Lei Yu

China is a vast country frequently impacted by multiple natural hazards. All natural disasters have been reported in China, except volcanic eruptions. Almost every region in China is threatened by at least one type of natural hazard, and the rural areas are most vulnerable, with fewer resources and less developed disaster protective measures as well as lower levels of preparedness. In the first 30 years since its establishment in 1949, the Chinese government, hindered by resource constraints, encouraged local communities to be responsible for disaster response. As the country’s economy grew exponentially, after it opened its doors to the world in the late 1970s, China’s natural hazard governance (NHG) system quickly became more top-down, with the government leading the way for planning, coordinating, directing, and allocating resources for natural disasters. The development of China’s NHG is linked to the evolution of its ideologies, legislation system, and organizational structures for disaster management. Ancient China’s disaster management was undergirded by the ideology that one accepted one’s fate passively in the event of a disaster. In contemporary China, three ideologies guide the NHG: (a) passive disaster relief characterized by “help oneself by engaging in production”; (b) active disaster management characterized by “emergency management”; and (c) optimized disaster risk governance characterized by “multiple stakeholders working together.” Meanwhile, the NHG legislation and systems have become more open, transparent, and integrated one over time. Evidenced by the unprecedented growth of social organizations and private companies that engaged in disaster-related activities during and after the 2008 Wenchuan earthquake, discussions on integrating bottom-up capacities with the top-down system have increased recently. The Chinese government started purchasing services from social organizations and engaging them in building disaster model communities (officially known as “Comprehensive Disaster Reduction Demonstration Communities”) in recent years. These are, potentially, two specific ways for social organizations to contribute to China’s NHG system development.

Article

Natural Hazards Governance in Mexico  

Elizabeth Mansilla

As a result of the earthquakes that occurred in September 1985 and their human and material consequences, disaster care in Mexico became institutionalized and acquired the rank of public policy when the first national civil protection law was published years later. More than 30 years after the creation of the National Civil Protection System, there have been some important advances; however, they have not been translated into higher levels of safety for populations exposed to risk. On the contrary, the evidence shows that the country’s risk, as well as the number of disasters and associated material losses, increase year by year. To a large extent, this stems from an approach based predominantly on post-disaster response by strengthening preparedness and emergency response capacities and creating financial mechanisms to address reconstruction processes, as opposed to broader approaches seeking to address the root causes of risk and disasters. Post-disaster actions and reconstruction processes have failed to achieve acceptable levels of efficiency, and disorganization and misuse of resources that should benefit disaster-affected populations still prevails.

Article

Natural Hazards Governance in South Asia  

Mihir Bhatt, Ronak B. Patel, and Kelsey Gleason

South Asia is faced with a range of natural hazards, including floods, droughts, cyclones, earthquakes, landslides, and tsunamis. Rapid and unplanned urbanization, environmental degradation, climate change, and socioeconomic conditions are increasing citizens’ exposure to and risk from natural hazards and resulting in more frequent, intense, and costly disasters. Although governments and the international community are investing in disaster risk reduction, natural hazard governance in South Asian countries remain weak and often warrants a review when a major natural disaster strikes. Natural hazards governance is an emerging concept, and many countries in South Asia have a challenging hazard governance context.

Article

Old Media, New Media, and the Complex Story of Disasters  

Josh Greenberg and T. Joseph Scanlon

Media have always played an important role in times of emergency and disaster. Undersea cables, international news agencies, the press, radio and television, and, most recently, digital and mobile technologies—all have played myriad and complex roles in supporting emergency response and notification, and in helping constitute a shared experience that can be important to social mobilization and community formation. The geographical location of disasters and the identities of victims, the increasingly visual nature of disaster events, and the ubiquitous nature of media in our lives, all shape and influence which kinds of emergencies attract global media and public attention, and how we come to understand them. Globalization has compressed time and space such that a whole range of disasters—from natural events (cyclones, earthquakes, and hurricanes) to industrial accidents and terrorist attacks—appear on our television and mobile screens with almost daily frequency. There is nothing inherent about these events that give them meaning—they occur in a real, material world; but for many of us, our experience of these events is shaped and determined in large part by our interactions with media industries, institutions, and technologies. Understanding the media’s construction of these events as disasters provides important insight into the nature of disaster mitigation, response and recovery.