Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NATURAL HAZARD SCIENCE (oxfordre.com/naturalhazardscience). (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 21 August 2019

Abstract and Keywords

Communities facing urban flood risk have access to powerful flood simulation software for use in disaster-risk-reduction (DRR) initiatives. However, recent research has shown that flood risk continues to escalate globally, despite an increase in the primary outcome of flood simulation: increased knowledge. Thus, a key issue with the utilization of urban flood models is not necessarily development of new knowledge about flooding, but rather the achievement of more socially robust and context-sensitive knowledge production capable of converting knowledge into action. There are early indications that this can be accomplished when an urban flood model is used as a tool to bring together local lay and scientific expertise around local priorities and perceptions, and to advance improved, target-oriented methods of flood risk communication.

The success of urban flood models as a facilitating agent for knowledge coproduction will depend on whether they are trusted by both the scientific and local expert, and to this end, whether the model constitutes an accurate approximation of flood dynamics is a key issue. This is not a sufficient condition for knowledge coproduction, but it is a necessary one. For example, trust can easily be eroded at the local level by disagreements among scientists about what constitutes an accurate approximation.

Motivated by the need for confidence in urban flood models, and the wide variety of models available to users, this article reviews progress in urban flood model development over three eras: (1) the era of theory, when the foundation of urban flood models was established using fluid mechanics principles and considerable attention focused on development of computational methods for solving the one- and two-dimensional equations governing flood flows; (2) the era of data, which took form in the 2000s, and has motivated a reexamination of urban flood model design in response to the transformation from a data-poor to a data-rich modeling environment; and (3) the era of disaster risk reduction, whereby modeling tools are put in the hands of communities facing flood risk and are used to codevelop flood risk knowledge and transform knowledge to action. The article aims to inform decision makers and policy makers regarding the match between model selection and decision points, to orient the engineering community to the varied decision-making and policy needs that arise in the context of DRR activities, to highlight the opportunities and pitfalls associated with alternative urban flood modeling techniques, and to frame areas for future research.

Keywords: urban flood modeling, disaster risk reduction, flood risk, risk communication, shallow-water equations

Access to the complete content on Oxford Research Encyclopedia of Natural Hazard Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.