1-2 of 2 Results

  • Keywords: existential x
Clear all

Article

Like any other species, Homo sapiens can potentially go extinct. This risk is an existential risk: a threat to the entire future of the species (and possible descendants). While anthropogenic risks may contribute the most to total extinction risk natural hazard events can plausibly cause extinction. Historically, end-of-the-world scenarios have been popular topics in most cultures. In the early modern period scientific discoveries of changes in the sky, meteors, past catastrophes, evolution and thermodynamics led to the understanding that Homo sapiens was a species among others and vulnerable to extinction. In the 20th century, anthropogenic risks from nuclear war and environmental degradation made extinction risks more salient and an issue of possible policy. Near the end of the century an interdisciplinary field of existential risk studies emerged. Human extinction requires a global hazard that either destroys the ecological niche of the species or harms enough individuals to reduce the population below a minimum viable size. Long-run fertility trends are highly uncertain and could potentially lead to overpopulation or demographic collapse, both contributors to extinction risk. Astronomical extinction risks include damage to the biosphere due to radiation from supernovas or gamma ray bursts, major asteroid or comet impacts, or hypothesized physical phenomena such as stable strange matter or vacuum decay. The most likely extinction pathway would be a disturbance reducing agricultural productivity due to ozone loss, low temperatures, or lack of sunlight over a long period. The return time of extinction-level impacts is reasonably well characterized and on the order of millions of years. Geophysical risks include supervolcanism and climate change that affects global food security. Multiyear periods of low or high temperature can impair agriculture enough to stress or threaten the species. Sufficiently radical environmental changes that lead to direct extinction are unlikely. Pandemics can cause species extinction, although historical human pandemics have merely killed a fraction of the species. Extinction risks are amplified by systemic effects, where multiple risk factors and events conspire to increase vulnerability and eventual damage. Human activity plays an important role in aggravating and mitigating these effects. Estimates from natural extinction rates in other species suggest an overall risk to the species from natural events smaller than 0.15% per century, likely orders of magnitude smaller. However, due to the current situation with an unusually numerous and widely dispersed population the actual probability is hard to estimate. The natural extinction risk is also likely dwarfed by the extinction risk from human activities. Many extinction hazards are at present impossible to prevent or even predict, requiring resilience strategies. Many risks have common pathways that are promising targets for mitigation. Endurance mechanisms against extinction may require creating refuges that can survive the disaster and rebuild. Because of the global public goods and transgenerational nature of extinction risks plus cognitive biases there is a large undersupply of mitigation effort despite strong arguments that it is morally imperative.

Article

People not only want to be safe from natural hazards; they also want to feel they are safe. Sometimes these two desires pull in different directions, and when they do, this slows the journey to greater physical adaptation and resilience. All people want to feel safe—especially in their own homes. In fact, although not always a place of actual safety, in many cultures “home” is nonetheless idealized as a place of security and repose. The feeling of having a safe home is one part of what is termed ontological security: freedom from existential doubts and the ability to believe that life will continue in much the same way as it always has, without threat to familiar assumptions about time, space, identity, and well-being. By threatening our homes, floods, earthquakes, and similar events disrupt ontological security: they destroy the possessions that support our sense of who we are; they fracture the social structures that provide us with everyday needs such as friendship, play, and affection; they disrupt the routines that give our lives a sense of predictability; and they challenge the myth of our immortality. Such events, therefore, not only cause physical injury and loss; by damaging ontological security, they also cause emotional distress and jeopardize long-term mental health. However, ontological security is undermined not only by the occurrence of hazard events but also by their anticipation. This affects people’s willingness to take steps that would reduce hazard vulnerability. Those who are confident that they can eliminate their exposure to a hazard will usually do so. More commonly, however, the available options come with uncertainty and social/psychological risks: often, the available options only reduce vulnerability, and sometimes people doubt the effectiveness of these options or their ability to choose and implement appropriate measures. In these circumstances, the risk to ontological security that is implied by action can have greater influence than the potential benefits. For example, although installing a floodgate might reduce a business’s flood vulnerability, the business owner might feel that its presence would act as an everyday reminder that the business, and the income derived from it, are not secure. Similarly, bolting furniture to the walls of a home might reduce injuries in the next earthquake, but householders might also anticipate that it would remind them that there is a continual threat to their home. Both of these circumstances describe situations in which the anticipation of future feelings can tap into less conscious anxieties about ontological security. The manner in which people anticipate impacts on ontological security has several implications for preparedness. For example, it suggests that hazard warnings will be counterproductive if they are not accompanied by suggestions of easy, reliable ways of eliminating risk. It also suggests that adaptation measures should be designed not to enhance awareness of the hazard.