1-20 of 56 Results

  • Keywords: hazards x
Clear all

Article

Daniel P. Aldrich, Michelle A. Meyer, and Courtney M. Page-Tan

The impact of disasters continues to grow in the early 21st century, as extreme weather events become more frequent and population density in vulnerable coastal and inland cities increases. Against this backdrop of risk, decision-makers persist in focusing primarily on structural measures to reduce losses centered on physical infrastructure such as berms, seawalls, retrofitted buildings, and levees. Yet a growing body of research emphasizes that strengthening social infrastructure, not just physical infrastructure, serves as a cost-effective way to improve the ability of communities to withstand and rebound from disasters. Three distinct kinds of social connections, including bonding, bridging, and linking social ties, support resilience through increasing the provision of emergency information, mutual aid, and collective action within communities to address natural hazards before, during, and after disaster events. Investing in social capital fosters community resilience that transcends natural hazards and positively affects collective governance and community health. Social capital has a long history in social science research and scholarship, particularly in how it has grown within various disciplines. Broadly, the term describes how social ties generate norms of reciprocity and trust, allow collective action, build solidarity, and foster information and resource flows among people. From education to crime, social capital has been shown to have positive impacts on individual and community outcomes, and research in natural hazards has similarly shown positive outcomes for individual and community resilience. Social capital also can foster negative outcomes, including exclusionary practices, corruption, and increased inequality. Understanding which types of social capital are most useful for increasing resilience is important to move the natural hazards field forward. Many questions about social capital and natural hazards remain, at best, partially answered. Do different types of social capital matter at different stages of disaster—e.g., mitigation, preparedness, response, and recovery? How do social capital’s effects vary across cultural contexts and stratified groups? What measures of social capital are available to practitioners and scholars? What actions are available to decision-makers seeking to invest in the social infrastructure of communities vulnerable to natural hazards? Which programs and interventions have shown merit through field tests? What outcomes can decision-makers anticipate with these investments? Where can scholars find data sets on resilience and social capital? The current state of knowledge about social capital in disaster resilience provides guidance about supporting communities toward more resilience.

Article

Brenden Jongman, Hessel C. Winsemius, Stuart A. Fraser, Sanne Muis, and Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.

Article

As with countless other policy areas, natural hazard policy can be viewed as a jurisdictional competition between executive and legislative branches. While policymaking supremacy is delegated to the legislative branch in constitutional democracies, the power over implementation, budgeting, and grant-making that executive agencies enjoy means that the executive branch wields considerable influence over outcomes in natural hazards policymaking. The rules that govern federal implementation of complex legislative policies put the implementing agency at the center of influence over how policy priorities play out in local, county, and state processes before, during, and after disasters hit. Examples abound related to this give-and-take between the legislative and executive functions of government within the hazards and disaster realm, but none more telling than the changes made to US disaster policy after September 11th, which profoundly affected natural hazards policy as well as security policy. The competition and potential for mismatch between legislative and executive priorities has been heightened since the Federal Emergency Management Agency (FEMA) was reorganized under the Department of Homeland Security. While this may appear uniquely American, the primacy of terrorism and other security-related threats not only dwarfs natural hazards issues in the United States, but also globally. Among the most professionalized and powerful natural hazards and disaster agencies prior to 9/11, FEMA has seen its influence diminished and its access to decision-makers reduced. This picture of legislative and executive actors within the natural hazards policy domain who compete for supremacy goes beyond the role of FEMA and post-9/11 policy. Power dynamics associated with budgets, oversight and accountability, and relative power among executive agencies are ongoing issues important to understanding the competition for policy influence as natural hazards policy competes for attention, funding, and power within the broader domain of all-hazards policy.

Article

The field of natural hazards governance has changed substantially since the 1970s as the breadth and severity of natural hazards have grown. These changes have been driven by greater social scientific knowledge around natural hazards and disasters, and by changes in structure of natural hazards governance. The governance of issues relating to natural hazards is challenging because of the considerable complexity inherent in preparing for, responding to, mitigating, or recovering from disasters.

Article

Public participation in environmental management, and more specifically in hazard mitigation planning, has received much attention from scholars and practitioners. A shift in perspective now sees the public as a fundamental player in decision making rather than simply as the final recipient of a policy decision. Including the public in hazard mitigation planning brings widespread benefits. First, communities gain awareness of the risks they live with, and thus, this is an opportunity to empower communities and improve their resilience. Second, supported by a collaborative participation process, emergency managers and planners can achieve the ultimate goal of strong mitigation plans. Although public participation is highly desired as an instrument to improve hazard mitigation planning, appropriate participation techniques are context dependent and some trade-offs exist in the process design (such as between representativeness and consensus building). Designing participation processes requires careful planning and an all-around consideration of the representativeness of stakeholders, timing, objectives, knowledge, and ultimately desired goals to achieve. Assessing participation also requires more consistent methods to facilitate policy learning from diverse experiences. New decision-support tools may be necessary to gain widespread participation from laypersons lacking technical knowledge of hazards and risks.

Article

Agenda setting describes the process through which issues are selected for consideration by a decision-making body. Among the myriad of issues policymakers can consider, few are more vexing than natural hazards. By aggregating (or threatening to aggregate) death, destruction, and economic loss, natural hazards represent a serious and persistent threat to public safety. While citizens rightfully expect policymakers to protect them, many of the policy challenges associated natural hazards fail to reach the crowded government agenda. This article reviews the literature on agenda setting and natural hazards, including the strain between preparing for emerging hazards, on the one hand, and responding to existing disasters, on the other hand. It considers the extent to which natural hazards pose distinctive difficulties during the agenda-setting process, focusing specifically on the dynamics of issue identification, problem definition, venue shopping, and interest group mobilization in natural hazard domains. It closes by suggesting a number of future avenues of agenda-setting research.

Article

Timothy Sim and Jun Lei Yu

China is a vast country frequently impacted by multiple natural hazards. All natural disasters have been reported in China, except volcanic eruptions. Almost every region in China is threatened by at least one type of natural hazard, and the rural areas are most vulnerable, with fewer resources and less developed disaster protective measures as well as lower levels of preparedness. In the first 30 years since its establishment in 1949, the Chinese government, hindered by resource constraints, encouraged local communities to be responsible for disaster response. As the country’s economy grew exponentially, after it opened its doors to the world in the late 1970s, China’s natural hazard governance (NHG) system quickly became more top-down, with the government leading the way for planning, coordinating, directing, and allocating resources for natural disasters. The development of China’s NHG is linked to the evolution of its ideologies, legislation system, and organizational structures for disaster management. Ancient China’s disaster management was undergirded by the ideology that one accepted one’s fate passively in the event of a disaster. In contemporary China, three ideologies guide the NHG: (a) passive disaster relief characterized by “help oneself by engaging in production”; (b) active disaster management characterized by “emergency management”; and (c) optimized disaster risk governance characterized by “multiple stakeholders working together.” Meanwhile, the NHG legislation and systems have become more open, transparent, and integrated one over time. Evidenced by the unprecedented growth of social organizations and private companies that engaged in disaster-related activities during and after the 2008 Wenchuan earthquake, discussions on integrating bottom-up capacities with the top-down system have increased recently. The Chinese government started purchasing services from social organizations and engaging them in building disaster model communities (officially known as “Comprehensive Disaster Reduction Demonstration Communities”) in recent years. These are, potentially, two specific ways for social organizations to contribute to China’s NHG system development.

Article

The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments. The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development. This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.

Article

Dewald van Niekerk and Livhuwani David Nemakonde

The sub-Saharan Africa (SSA) region, along with the rest of the African continent, is prone to a wide variety of natural hazards. Most of these hazards and the associated disasters are relatively silent and insidious, encroaching on life and livelihoods, increasing social, economic, and environmental vulnerability even to moderate events. With the majority of SSA’s disasters being of hydrometeorological origin, climate change through an increase in the frequency and magnitude of extreme weather events is likely to exacerbate the situation. Whereas a number of countries in SSA face significant governance challenges to effectively respond to disasters and manage risk reduction measures, considerable progress has been made since the early 2000s in terms of policies, strategies, and/or institutional mechanisms to advance disaster risk reduction and disaster risk management. As such, most countries in SSA have developed/reviewed policies, strategies, and plans and put in place institutions with dedicated staffs and resources for natural hazard management. However, the lack of financial backing, limited skills, lack of coordination among sectors, weak political leadership, inadequate communication, and shallow natural hazard risk assessment, hinders effective natural hazard management in SSA. The focus here is on the governance of natural hazards in the sub-Saharan Africa region, and an outline of SSA’s natural hazard profile is presented. Climate change is increasing the frequency and magnitude of extreme weather events, thus influencing the occurrence of natural hazards in this region. Also emphasized are good practices in natural hazard governance, and SSA’s success stories are described. Finally, recommendations on governance arrangements for effective implementation of disaster risk reduction initiatives and measures are provided.

Article

Glacier retreat is considered to be one of the most obvious manifestations of recent and ongoing climate change in the majority of glacierized alpine and high-latitude regions throughout the world. Glacier retreat itself is both directly and indirectly connected to the various interrelated geomorphological/hydrological processes and changes in hydrological regimes. Various types of slope movements and the formation and evolution of lakes are observed in recently deglaciated areas. These are most commonly glacial lakes (ice-dammed, bedrock-dammed, or moraine-dammed lakes). “Glacial lake outburst flood” (GLOF) is a phrase used to describe a sudden release of a significant amount of water retained in a glacial lake, irrespective of the cause. GLOFs are characterized by extreme peak discharges, often several times in excess of the maximum discharges of hydrometeorologically induced floods, with an exceptional erosion/transport potential; therefore, they can turn into flow-type movements (e.g., GLOF-induced debris flows). Some of the Late Pleistocene lake outburst floods are ranked among the largest reconstructed floods, with peak discharges of up to 107 m3/s and significant continental-scale geomorphic impacts. They are also considered capable of influencing global climate by releasing extremely high amounts of cold freshwater into the ocean. Lake outburst floods associated with recent (i.e., post-Little Ice Age) glacier retreat have become a widely studied topic from the perspective of the hazards and risks they pose to human society, and the possibility that they are driven by anthropogenic climate change. Despite apparent regional differences in triggers (causes) and subsequent mechanisms of lake outburst floods, rapid slope movement into lakes, producing displacement waves leading to dam overtopping and eventually dam failure, is documented most frequently, being directly (ice avalanche) and indirectly (slope movement in recently deglaciated areas) related to glacial activity and glacier retreat. Glacier retreat and the occurrence of GLOFs are, therefore, closely tied, because glacier retreat is connected to: (a) the formation of new, and the evolution of existing, lakes; and (b) triggers of lake outburst floods (slope movements).

Article

Vincenzo Bollettino, Tilly Alcayna, Philip Dy, and Patrick Vinck

In recent years, the notion of resilience has grown into an important concept for both scholars and practitioners working on disasters. This evolution reflects a growing interest from diverse disciplines in a holistic understanding of complex systems, including how societies interact with their environment. This new lens offers an opportunity to focus on communities’ ability to prepare for and adapt to the challenges posed by natural hazards, and the mechanism they have developed to cope and adapt to threats. This is important because repeated stresses and shocks still cause serious damages to communities across the world, despite efforts to better prepare for disasters. Scholars from a variety of disciplines have developed resilience frameworks both to guide macro-level policy decisions about where to invest in preparedness and to measure which systems perform best in limiting losses from disasters and ensuring rapid recovery. Yet there are competing conceptions of what resilience encompasses and how best to measure it. While there is a significant amount of scholarship produced on resilience, the lack of a shared understanding of its conceptual boundaries and means of measurement make it difficult to demonstrate the results or impact of resilience programs. If resilience is to emerge as a concept capable of aiding decision-makers in identifying socio-geographical areas of vulnerability and improving preparedness, then scholars and practitioners need to adopt a common lexicon on the different elements of the concept and harmonize understandings of the relationships amongst them and means of measuring them. This article reviews the origins and evolution of resilience as an interdisciplinary, conceptual umbrella term for efforts by different disciplines to tackle complex problems arising from more frequent natural disasters. It concludes that resilience is a useful concept for bridging different academic disciplines focused on this complex problem set, while acknowledging that specific measures of resilience will differ as different units and levels of analysis are employed to measure disparate research questions.

Article

James Goff

How big, how often, and where from? This is almost a mantra for researchers trying to understand tsunami hazard and risk. What we do know is that events such as the 2004 Indian Ocean Tsunami (2004 IOT) caught scientists by surprise, largely because there was no “research memory” of past events for that region, and as such, there was no hazard awareness, no planning, no risk assessment, and no disaster risk reduction. Forewarned is forearmed, but to be in that position, we have to be able to understand the evidence left behind by past events—palaeootsunamis—and to have at least some inkling of what generated them. While the 2004 IOT was a devastating wake-up call for science, we need to bear in mind that palaeotsunami research was still in its infancy at the time. What we now see is still a comparatively new discipline that is practiced worldwide, but as the “new kid on the block,” there are still many unknowns. What we do know is that in many cases, there is clear evidence of multiple palaeotsunamis generated by a variety of source mechanisms. There is a suite of proxy data—a toolbox, if you will—that can be used to identify a palaeotsunami deposit in the sedimentary record. Things are never quite as simple as they sound, though, and there are strong divisions within the research community as to whether one can really differentiate between a palaeotsunami and a palaeostorm deposit, and whether proxies as such are the way to go. As the discipline matures, though, many of these issues are being resolved, and indeed we have now arrived at a point where we have the potential to detect “invisible deposits” laid down by palaeotsunamis once they have run out of sediment to lay down as they move inland. As such, we are on the brink of being able to better understand the full extent of inundation by past events, a valuable tool in gauging the magnitude of palaeotsunamis. Palaeotsunami research is multidisciplinary, and as such, it is a melting pot of different scientific perspectives, which leads to rapid innovations. Basically, whatever is associated with modern events may be reflected in prehistory. Also, palaeotsunamis are often part of a landscape response pushed beyond an environmental threshold from which it will never fully recover, but that leaves indelible markers for us to read. In some cases, we do not even need to find a palaeotsunami deposit to know that one happened.

Article

Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation. In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry. Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.

Article

Nigeria, like many other countries in sub–Saharan Africa, is exposed to natural hazards and disaster events, the most prominent being soil and coastal erosion, flooding, desertification, drought, air pollution as a result of gas flaring, heatwaves, deforestation, and soil degradation due to oil spillage. These events have caused serious disasters across the country. In the southeast region, flooding and gully erosion have led to the displacement of communities. In the Niger Delta region, oil exploration has destroyed the mangrove forests as well as the natural habitat for fishes and other aquatic species and flora. In northern Nigeria, desert encroachment, deforestation, and drought have adversely affected agricultural production, thereby threatening national food security. The federal government, through its agencies, has produced and adopted policies and enacted laws and regulations geared towards containing the disastrous effects of natural hazards on the environment. The federal government collaborates with international organizations, such as the World Bank, International Atomic Energy Agency (IAEA), International Fund for Agricultural Development (IFAD), Center for Infectious Disease Research (CIDR), United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP), United Nations High Commission for Refugees UNHCR, and non-governmental organizations (NGOs), to address disaster-related problems induced by natural hazards. However, government efforts have not yielded the desired results due to inter-agency conflicts, corruption, low political will, and lack of manpower capacity for disaster management. There is a need for a good governance system for natural hazards prevention and reduction in the country. This will require inter-agency synergy, increased funding of agencies, capacity building, and public awareness/participation.

Article

Hazard management scholars have begun to develop an important line of inquiry based upon the idea of governance. This growing body of work focuses attention on how the hazard functions that were formerly carried out by public entities are now frequently dispersed among diverse sets of actors that include not only governmental institutions but also private-sector and civil society entities. While informative, this body of work is unduly narrow. In particular, it takes an actor-centric approach to the governance of hazards. A more comprehensive view would account for the relationship between the governance system and the underlying good being produced. Generally speaking, governance systems emerge to manage—or produce—particular goods. Accordingly, these systems will vary depending upon the nature of the underlying good. Thus, while it is important to describe the actors that shape the governance system—as the extant literature does— the failure to recognize or appreciate the relationship between hazards governance and its underlying good is non-trivial. At minimum, without this information scholars and practitioners cannot reasonably assess the efficacy of the system. To better understand hazards governance, there needs to be a clear picture of what the governance system is producing, as well as the defining characteristics thereof. The good being produced by hazards governance systems is resilience, which is both non-rivalrous and non-excludable. Simply stated, resilience can be conceptualized as a public good. Moreover, governance systems in general are comprised of multiple subsystems. In the case of hazards management, the subsystems are mitigation, preparedness, response, and recovery. Thus, the production technologies—aggregate effort, single best effort, and weakest link—will likely vary across the hazards governance system. Showing how these technologies potentially vary across hazard governance systems opens new and important lines of inquiry.

Article

Thomas Husted and David Nickerson

Natural disasters pose a significant and rapidly growing burden to society, causing over a million deaths and worldwide economic losses in the trillions of dollars in the last twenty years. Concerned over the extent to which their populations are exposed to disaster risk, policymakers in disaster-prone countries strive to increase the penetration of disaster insurance from its relatively low current level and wish to arrest the increasing share of public liability for private losses arising from rising public expenditures on disaster recovery. Although evidence regarding disaster risk and insurance suggests that individuals respond to their economic incentives when deciding on the degree to which to expose their property and other to risk from a recurrent disaster, potential inefficiencies in private insurance markets can distort these individual incentives and result in underinsurance and excessive exposure. Current research into whether such apparent market inefficiencies are primarily attributed to the behavior of private market participants or to the adverse incentives arising from current programs of disaster aid, regulation and other public policies is of fundamental importance to attaining these policy objectives. This article critically assesses the current state of mainstream economic and political research into disasters, public policy, and household behavior toward disaster risk. Findings of the most important and influential empirical and theoretical studies over the last 30 years are described, as well as limits on the robustness and interpretation of these findings arising from the characteristics of economic data on disasters and potential bias in measuring the determinants of disaster insurance coverage. Also discussed are both theoretical and empirical evidence that moral hazard on the part of households, insurance firms, and elected officials results in misallocations of private coverage; and it is demonstrated that, exactly contrary to the objectives of public policy, current programs of disaster aid in the presence of moral hazard create incentives for households to minimize, rather than maximize, market coverage of their exposure to disaster risk. The conclusion presents and proves a proposition, original to this article, that any compensatory public aid program is necessarily a source of economic inefficiency and, conditional on net losses, decreases economic welfare.

Article

Florian Roth, Timothy Prior, and Marco Käser

Western Europe is an area dominated by established democratic governments, backed by strong economies, for the most part. Drawing on refined technical risk analyses, preventive measures, and comprehensive resources for emergency response, countries from Western Europe have managed to mitigate the most prevalent and recurring hazards. Over the centuries, European governments have been successful in reducing the death toll related to natural phenomena. This has been achieved by addressing all three dimensions of the risk triangle—hazards, exposure, and vulnerability. However, cultural and political differences result in subtle, but distinct differences in the context of natural hazard governance. While these differences can be considered a strength in dealing with local hazards under specific contexts, they can complicate effective and coordinated prevention, preparedness, and response measures toward large-scale hazards. This is especially the case with transboundary hazards, the regional response to which has strongly influenced hazard governance in Western Europe. Evolving risk circumstances have resulted in constant adaptations in hazard governance in the region, including local, national, and transboundary arrangements, and a more recent re-localization in the face of new complex threats that has fallen under the umbrella of resilience building.

Article

Bureaucratic politics, discretion, and decision-making for natural hazards governance present an important challenge of the use of autonomous bureaucratic discretion in the absence of political accountability. Understanding how these factors influence discretion and policymaking is of critical importance for natural hazards because the extent to which bureaucrats are able to make decisions means that communities will be safer in the face of disaster. But the extent to which they are held accountable for their decisions has significant implications for public risk and safety. Bureaucrats are unelected and cannot be voted out of office. There are two significant areas that remain regarding the use of bureaucratic discretion in natural hazards policy. One key area is to consider the increasing emphasis on networked disaster governance on bureaucratic discretion and decision-making. The conventional wisdom is that networks facilitate disaster management much better than command and control approaches. However, the extent to which the use of bureaucratic discretion is important in the implementation of natural hazard policy, particularly for mitigation and preparedness, remains an open area of research. The other key area is the influence of bureaucratic discretion and decision-making when communities learn after a disaster. The political nature of disasters and the professional expertise of public service professionals imply that in order to make communities safer, bureaucrats will have to use discretion to push forward more aggressive mitigation and preparedness policies. Bureaucratic discretion would need to be used for both political and policy purposes in order to engage in policy learning after disasters that produces a substantive change.

Article

Jason Thistlethwaite and Daniel Henstra

Natural hazards are a complex governance problem. Managing the risks associated with natural hazards requires action at all scales—from household to national—but coordinating these nested responses to achieve a vertically cohesive course of action is challenging. Moreover, though governments have the legal authority and legitimacy to mandate or facilitate natural hazard risk reduction, non-governmental actors such as business firms, industry associations, research organizations and non-profit organizations hold much of the pertinent knowledge and resources. This interdependence demands horizontal collaboration, but coordinating risk reduction across organizational divides is fraught with challenges and requires skillful leadership. Flood risk management (FRM)—an integrated strategy to reduce the likelihood and impacts of flooding—demonstrates the governance challenge presented by natural hazards. By engaging stakeholders, coordinating public and private efforts, and employing a diversity of policy instruments, FRM can strengthen societal resilience, achieve greater efficiency, and enhance the legitimacy of decisions and actions to reduce flood risk. Implementing FRM, however, requires supportive flood risk governance arrangements that facilitate vertical and horizontal policy coordination by establishing strategic goals, negotiating roles and responsibilities, aligning policy instruments, and allocating resources.

Article

Marian Muste and Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.