1-15 of 15 Results

  • Keywords: mitigation x
Clear all

Article

David Proverbs and Jessica Lamond

Flood resilient construction has become an essential component of the integrated approach to flood risk management, now widely accepted through the concepts of making space for water and living with floods. Resilient construction has been in place for centuries, but only fairly recently has it been recognized as part of this wider strategy to manage flood risk. Buildings and the wider built environment are known to play a key role in flood risk management, and when buildings are constructed on or near to flood plains there is an obvious need to protect these. Engineered flood defense systems date back centuries, with early examples seen in China and Egypt. Levees were first built in the United States some 150 years ago, and were followed by the development of flood control acts and regulations. In 1945, Gilbert Fowler White, the so-called “father of floodplain management,” published his influential thesis which criticized the reliance on engineered flood defenses and began to change these approaches. In Europe, a shortage of farmable land led to the use of land reclamation schemes and the ensuing Land Drainage acts before massive flood events in the mid-20th century led to a shift in thinking towards the engineered defense schemes such as the Thames Barrier and Dutch dyke systems. The early 21st century witnessed the emergence of the “living with water” philosophy, which has resulted in the renewed understanding of flood resilience at a property level. The scientific study of construction methods and building technologies that are robust to flooding is a fairly recent phenomenon. There are a number of underlying reasons for this, but the change in flood risk philosophy coupled with the experience of flood events and the long process of recovery is helping to drive research and investment in this area. This has led to a more sophisticated understanding of the approaches to avoiding damage at an individual property level, categorized under three strategies, namely avoidance technology, water exclusion technology, and water entry technology. As interest and policy has shifted to water entry approaches, alongside this has been the development of research into flood resilient materials and repair and reinstatement processes, the latter gaining much attention in the recognition that experience will prompt resilient responses and that the point of reinstatement provides a good opportunity to install resilient measures. State-of-the-art practices now center on avoidance strategies incorporating planning legislation in many regions to prohibit or restrict new development in flood plains. Where development pressures mean that new buildings are permitted, there is now a body of knowledge around the impact of flooding on buildings and flood resilient construction and techniques. However, due to the variety and complexity of architecture and construction styles and varying flood risk exposure, there remain many gaps in our understanding, leading to the use of trial and error and other pragmatic approaches. Some examples of avoidance strategies include the use of earthworks, floating houses, and raised construction. The concept of property level flood resilience is an emerging concept in the United Kingdom and recognizes that in some cases a hybrid approach might be favored in which the amount of water entering a property is limited, together with the likely damage that is caused. The technology and understanding is moving forward with a greater appreciation of the benefits from combining strategies and property level measures, incorporating water resistant and resilient materials. The process of resilient repair and considerate reinstatement is another emerging feature, recognizing that there will be a need to dry, clean, and repair flood-affected buildings. The importance of effective and timely drying of properties, including the need to use materials that dry rapidly and are easy to decontaminate, has become more apparent and is gaining attention. Future developments are likely to concentrate on promoting the uptake of flood resilient materials and technologies both in the construction of new and in the retrofit and adaptation of existing properties. Further development of flood resilience technology that enhances the aesthetic appeal of adapted property would support the uptake of measures. Developments that reduce cost or that offer other aesthetic or functional advantages may also reduce the barriers to uptake. A greater understanding of performance standards for resilient materials will help provide confidence in such measures and support uptake, while further research around the breathability of materials and concerns around mold and the need to avoid creating moisture issues inside properties represent some of the key areas.

Article

James Goltz and Katsuya Yamori

Tsunamis are natural hazards that have caused massive destruction and loss of life in coastal areas worldwide for centuries. Major programs promoting tsunami safety, however, date from the early 20th century and have received far greater emphasis following two major events in the opening decade of the 21st century: the Indian Ocean Tsunami of December 26, 2004, and the Great East Japan Earthquake and Tsunami of March 11, 2011. In the aftermath of these catastrophic disasters, warning systems and the technologies associated with them have expanded from a concentration in the Pacific Ocean to other regions with significant tsunami vulnerability. Preparedness and hazard mitigation programs, once the province of wealthier nations, are now being shared with developing countries. While warning systems and tsunami mapping and modeling are basic tools in promoting tsunami safety, there are a number of strategies that are essential in protecting lives and property in major tsunami events. Preparedness strategies consist of tsunami awareness and education and actions that promote response readiness. These strategies should provide an understanding of how tsunamis occur, where they occur, how to respond to warnings or natural signs that a tsunami may occur, and what locations are safe for evacuation. Hazard mitigation strategies are designed to reduce the likelihood that coastal populations will be impacted by a tsunami, typically through engineered structures or removing communities from known tsunami inundation zones. They include natural or constructed high ground for evacuation, structures for vertical evacuation (either single purpose structures specifically for tsunami evacuation or existing buildings that are resistant to tsunami forces), seawalls, breakwaters, forest barriers, and tsunami river gates. Coastal jurisdictions may also use land-use planning ordinances or coastal zoning to restrict development in areas of significant risk of tsunami inundation. The relative efficacy of these strategies and locations where they have been implemented will be addressed, as will the issues and challenges regarding their implementation.

Article

Public participation in environmental management, and more specifically in hazard mitigation planning, has received much attention from scholars and practitioners. A shift in perspective now sees the public as a fundamental player in decision making rather than simply as the final recipient of a policy decision. Including the public in hazard mitigation planning brings widespread benefits. First, communities gain awareness of the risks they live with, and thus, this is an opportunity to empower communities and improve their resilience. Second, supported by a collaborative participation process, emergency managers and planners can achieve the ultimate goal of strong mitigation plans. Although public participation is highly desired as an instrument to improve hazard mitigation planning, appropriate participation techniques are context dependent and some trade-offs exist in the process design (such as between representativeness and consensus building). Designing participation processes requires careful planning and an all-around consideration of the representativeness of stakeholders, timing, objectives, knowledge, and ultimately desired goals to achieve. Assessing participation also requires more consistent methods to facilitate policy learning from diverse experiences. New decision-support tools may be necessary to gain widespread participation from laypersons lacking technical knowledge of hazards and risks.

Article

The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments. The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development. This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.

Article

Economic resilience, in its static form, refers to utilizing remaining resources efficiently to maintain functionality of a household, business, industry, or entire economy after a disaster strikes, and, in its dynamic form, to effectively investing in repair and reconstruction to promote accelerated recovery. As such, economic resilience is oriented to implementing various post-disaster actions (tactics) to reduce business interruption (BI), in contrast to pre-disaster actions such as mitigation that are primarily oriented to preventing property damage. A number of static resilience tactics have been shown to be effective (e.g., conserving scarce inputs, finding substitutes from within and from outside the region, using inventories, and relocating activity to branch plants/offices or other sites). Efforts to measure the effectiveness of the various tactics are relatively new and aim to translate these estimates into dollar benefits, which can be juxtaposed to estimates of dollar costs of implementing the tactics. A comprehensive benefit-cost analysis can assist public- and private sector decision makers in determining the best set of resilience tactics to form an overall resilience strategy.

Article

Christophe Ancey

Avalanches have long been a natural threat to humans in mountainous areas. At the end of the Middle Ages, the population in Europe experienced significant growth, leading to an intensive exploitation of upper valleys. At almost the same time, Europe’s climate cooled down considerably and severe winters became more common. In the Alps, several villages were partly destroyed by avalanches, forcing inhabitants to develop the first mitigation strategies against the threat. By the late 19th century, the development of central administrations led to the creation of national forestry departments in each alpine country, principally to tackle the dangers posed by avalanches. As a result, forest engineers conceived not only the science of avalanches but also the first large-scale techniques to alleviate avalanche risks (such as reforestation). However, with the steady growth of transport, industry, tourism, and urbanization in high-altitude areas, these earlier measures soon reached their limits. A new impetus was then given to better forecasting avalanche activity and predicting the destructive potential of extreme avalanches. Avalanche zoning, snowfall forecasts, avalanche-dynamics models, and new protection systems for the protection of structures and inhabitants have become increasingly more common since World War II. With the advent of personal computers and the increasing sophistication of computational resources, it has become easier to predict the behavior of avalanches and protect threatened areas accordingly. The success of this research and the protection policies implemented since World War II are reflected in the drastic reduction in the number of disasters affecting dwellings in the Alps (most deaths by avalanche now occur during recreational activities). Significant progress has been made since the 1980s, leading to a better understanding of avalanche behavior and the mediation of associated risks. Yet we should not assume that this progress is steady or that our capacity to control such hazards is more advanced than it was two decades ago. Efforts to predict avalanches contrast with work in other sciences such as meteorology, for which forecasts have become increasingly more reliable with advancements in computational power. Explaining the difference is simple: in meteorology, the material is air, a substance whose behavior is well known. The main difficulty lies in the computation of enormous volumes of air encountering various flow and temperature conditions. For avalanches, the material is snow, a subtle mixture of water (in different forms) and air, whose behavior is remarkably complex. Modern models of avalanche dynamics are able to predict this behavior with varying degrees of success.

Article

Natural disasters cause massive social disruptions and can lead to tremendous economic and human losses. Given their uncertain and destructive nature, disasters invariably induce significant governmental responses and typically pose severe financial challenges for jurisdictions across all levels of government. From a public finance perspective, disasters cause governments to incur additional spending on various emergency management activities, and by disrupting normal business activities they also affect tax base robustness and cause revenue losses. The question is: How significant are these fiscal effects and how do they affect hazards governance more generally? Understanding the fiscal implications of natural disasters is essential to evaluating the size of the economic costs of disasters as well as forecasting governments’ financial exposure to future shocks. Furthermore, how disaster costs are shared among different levels of government is another important question concerning the intergovernmental dynamics of disaster management. In the U.S. federal system, the direct fiscal costs of natural disasters (i.e., increased government expenditures due to disaster shocks) are largely borne by the federal government. It is estimated that Hurricane Katrina cost the federal government approximately $120 billion while Hurricane Sandy cost $60 billion. Even in the years without large-scale disaster events, federal disaster spending is between $2 billion and $6 billion annually. Under the Stafford Act, the federal government plays a critical role in funding disaster-related programs (e.g., direct relief, mitigation grants, and subsidized insurance programs) and redistributing the actual costs of natural hazards, meaning that a considerable portion of the local disaster burden is shifted to all U.S. taxpayers. This raises a set of issues concerning the equity and efficiency of the U.S. disaster policy framework. Managing disasters involves multiphased activities to mitigate, prepare for, respond to, and recover from disaster shocks. There is a common belief that the federal government inappropriately spends far more on ex post disaster response, relief, and recovery than what it spends on ex ante mitigation and preparedness, often driven by political motivations (e.g., meeting voters’ preferences for postdisaster aid) and the current budget rules. As pointed out by many others, federal disaster relief and assistance distort the subnational incentive to invest in local disaster prevention and mitigation efforts. Furthermore, given the mounting evidence on the cost-effectiveness of disaster mitigation programs in reducing future disaster damages, the current practice of focusing resources on postdisaster assistance means substantial public welfare losses. In recent years there has been a call for the federal government to shift its disaster policy emphasis toward mitigation and preparedness and also to facilitate local efforts on mitigation. To achieve the goal requires a comprehensive reform in government budgeting for emergency management.

Article

Humankind has always lived with natural hazards and their consequences. While the frequency and intensity of geological processes may have remained relatively stable, population growth and infrastructure development in areas susceptible to experiencing natural hazards has increased societal risk and the losses experienced from hazard activity. Furthermore, increases in weather-related (e.g., hurricanes, wildfires) hazards emanating from climate change will increase risk in some countries and result in others having to deal with natural hazard risk for the first time. Faced with growing and enduring risk, disaster risk reduction (DRR) strategies will play increasingly important roles in facilitating societal sustainability. This article discusses how readiness or preparedness makes an important contribution to comprehensive DRR. Readiness is defined here in terms of those factors that facilitate people’s individual and collective capability to anticipate, cope with, adapt to, and recover from hazard consequences. This article first discusses the need to conceptualize readiness as comprising several functional categories (structural, survival/direct action, psychological, community/capacity building, livelihood and community-agency readiness). Next, the article discusses how the nature and extent of people’s readiness is a function of the interaction between the information available and the personal, family, community and societal factors used to interpret information and support readiness decision-making. The health belief model (HBM), protection motivation theory (PMT), person-relative-to-event (PrE) theory, theory of planned behavior (TPB), critical awareness (CA), protective action decision model (PADM), and community engagement theory (CET) are used to introduce variables that inform people’s readiness decision-making. A need to consider readiness as a developmental process is discussed and identifies how the variables introduced in the above theories play different roles at different stages in the development of comprehensive readiness. Because many societies must learn to coexist with several sources of hazard, an “all-hazards” approach is required to facilitate the capacity of societies and their members to be resilient in the face of the various hazard consequences they may have to contend with. This article discusses research into readiness for the consequences that arise from earthquake, volcanic, flood, hurricane, and tornado hazards. Furthermore, because hazards transcend national and cultural divides, a comprehensive conceptualization of readiness must accommodate a cross-cultural perspective. Issues in the cross-cultural testing of theory is discussed, as is the need for further work into the relationship between readiness and culture-specific beliefs and processes.

Article

Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems. That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.

Article

Francisco Gutiérrez

Sinkholes or dolines are closed depressions characteristic of terrains underlain by soluble rocks (carbonates and/or evaporites). They may be related to the differential dissolutional lowering of the ground surface (solution sinkholes) or to subsidence induced by subsurface karstification (subsidence sinkholes). Three main subsidence mechanisms may operate individually or in combination: collapse, sagging, and suffosion. Subsidence sinkholes may cause severe damage to human built structures, and the occurrence of catastrophic collapse sinkholes may lead to the loss of human life. Dissolution and subsidence processes involved in the development of subsidence sinkholes are controlled by a wide range of natural and anthropogenic factors. Recent literature reviews reveal that the vast majority of the damaging sinkholes are induced by human activities (e.g., water table decline, water input to the ground). The main steps in sinkhole hazard and risk assessment include: (a) construction of comprehensive sinkhole inventories and detailed sinkhole characterization; (b) development of independently tested sinkhole susceptibility and hazard models, preferably incorporating magnitude and frequency relationships; (c) assessing risk combining hazard and vulnerability data. Sinkhole risk models may be used as the basis to perform cost-benefit analyses that allow the cost-effectiveness of different mitigation strategies to be estimated. Three main concepts may be applied to reduce sinkhole risk: (a) avoiding sinkholes and sinkhole-prone areas (preventive planning); (b) diminishing the activity of dissolution and/or subsidence processes (hazard reduction); (c) incorporating special designs in the structures (vulnerability reduction). Although our capabilities to investigate sinkhole hazards and reduce the associated risks will continue to increase in the near future, the damage related to sinkholes will also increase, largely due to the adverse changes caused by human activities on the karst environments and the ineffective knowledge transfer between scientists, technicians, and decision-makers. This article presents the processes and factors involved in sinkhole development and reviews the main approaches used to assess and manage sinkhole hazards and risks.

Article

Charlotte L. Kirschner, Akheil Singla, and Angie Flick

As more and more of the population moves to areas prone to natural hazards, the costs of disasters are on the rise. Given that these events are an eventuality, governments must aid their communities in promoting disaster resilience, enabling their communities to reduce their susceptibility to natural hazards, and adapting to and recovering from disasters when they occur. The federal system in the United States divides these responsibilities among national, state, and local governments. Local and state governments are largely responsible for the direct provision of services to their communities, and the Stafford Act of 1988 provides that the federal government will pay at least 75% of all eligible expenses once a presidential major disaster declaration has been made. As a result, state and local governments have become largely reliant on transfers from the federal government to pay for disaster relief and recovery efforts. This system encourages state and local governments to ignore the risks they face and turn to the federal government for aid after a disaster. This system also seems to underemphasize an important mechanism that can bolster disaster resilience: financing the costs of disasters in advance through ex ante budgeting. Four tools for budgeting ex ante—intergovernmental grants, disaster stabilization funds, the municipal bond market, and hazard insurance—are described and examples of their use provided. Despite limited use by state governments, these tools provide governments the opportunity to build community resilience to disasters by budgeting ex ante for them.

Article

Natural hazard services include a wide range of activities, many of which are allied with public safety, but can also be taken to include natural resource management, land-use planning, and other related activities. These activities are considered to be part of emergency management, and have come to be seen as a public sector responsibility even though they are often carried out by contractors. They take place across all of the phases of the emergency management cycle: response, recovery, mitigation, and preparedness. The prevalence of private sector utilization is such that many services, such as hazard mitigation planning, grants administration, and various components of recovery, can be argued to be largely privatized due to the extent of market penetration and control from the private sector, including in the creation of policy and its implementation. However, there are unique challenges that arise when private-sector provision of services, and not just products, is utilized. Partnerships and other collaborative models are utilized frequently, including not just private sector firms, but also non-profit organizations, academic institutions, community organizations, and other groups to help overcome these challenges.

Article

A core responsibility of government is to protect people and property from disasters caused by natural hazards. The wide mix of policy instruments available and their impacts across governance systems to prevent and mitigate such disasters, to prepare and respond when they occur, and to provide for recovery offer a wealth of lessons for understanding policy instrument choice and impacts in a policy arena crucial to ensuring public safety. The array of options spans the entire policy process from problem definition and agenda-setting to policymaking, decision-making, and implementation, as well as evaluation. Regulatory instruments are especially important but individual voluntary behaviors are crucial. Instrument selection for dealing with natural hazards is a relatively understudied but emerging topic in the policy literature overall, which can inform the gamut of classical issues in the study of public policy. Comparative public policy research, an historical perspective, and careful attention to an array of research approaches are especially useful for examining instrument selection for natural hazards policies. This allows for acknowledging the gamut of diverse actors and agencies that span the public, private, and nonprofit sectors, as well as civil society. Policy choices are both domestic and internationalized. Importantly, policy instrument choices need to be examined across multiple levels of governance, both horizontal and vertical, and must not focus solely on the mix of policy instruments but also on actors and institutional structures, settings, and cultures. Research in political science, economics, public policy, and public administration is especially informative regarding public sector agency choice of policy instruments.

Article

Marian Muste and Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.

Article

Non-profit organizations make significant contributions to society in a number of ways. In addition to providing services to underrepresented, marginalized, and vulnerable populations in our communities, they also play important advocacy, expressive and leadership development, community building and democratization, and innovation-oriented roles. The sector is thus regarded as “critical civic infrastructure,” civic capacity, or a social safety net. As such, through collaborative engagement in disaster or emergency management, non-profits can be even more instrumental in helping communities become disaster resilient. Disaster management can be understood as a four-stage cycle that includes mitigation, preparedness, response, and recovery functions. Past disasters demonstrate that non-profits engage with this cycle in diverse ways. A few types of non-profit organizations explicitly include, as part of their mission, one or more of these stages of disaster management. These include traditional disaster relief organizations, organizations dedicated to preparedness, or those responsible for supporting risk reduction or mitigation efforts. Another set of organizations is typified by non-profits that shift their mission during times of disaster to fill unmet needs. These non-profits shift existing resources or skills from their pre-disaster use to new disaster relief functions. The other type of non-profit to respond or support disaster management is the emergent organization. These emergent non-profits or associations are formed during an event to respond to specific needs. They can endure past the disaster recovery period and become new permanent organizations. It is important to remember that non-profits and more broadly, civil society—represent a unique sphere of voluntary human organization and activity separate from the family, the state, and the market. In some cases, these organizations are embedded in communities, a position that grants them local presence, knowledge, and trust. As such, they are well positioned to play important advocacy roles that can elevate the needs of underrepresented communities, as well as instigate disaster management policies that can serve to protect these communities. Furthermore, their voluntary nature—and the public benefit they confer—also position them to attract much-needed resources from various individuals and entities in order to augment or supplement governments’ often limited capacity. In all, civil society in general, is a sphere well positioned to execute the full spectrum of emergency management functions alongside traditional state responses.