1-4 of 4 Results

  • Keywords: mountains x
Clear all


Permafrost-Related Geohazards and Infrastructure Construction in Mountainous Environments  

Lukas U. Arenson and Matthias Jakob

Mountain environments, home to about 12% of the global population and covering nearly a quarter of the global land surface, create hazardous conditions for various infrastructures. The economic and ecologic importance of these environments for tourism, transportation, hydropower generation, or natural resource extraction requires that direct and indirect interactions between infrastructures and geohazards be evaluated. Construction of infrastructure in mountain permafrost environments can change the ground thermal regime, affect gravity-driven processes, impact the strength of ice-rich foundations, or result in permafrost aggradation via natural convection. The severity of impact, and whether permafrost will degrade or aggrade in response to the construction, is a function of numerous parameters including climate change, which needs to be considered when evaluating the changes in existing or formation of new geohazards. The main challenge relates to the uncertainties associated with the projections of medium- (decadal) and long-term (century-scale) climate change. A fundamental understanding of the various processes at play and a good knowledge of the foundation conditions is required to ascertain that infrastructure in permafrost environment functions as intended. Many of the tools required for identifying geohazards in the periglacial and appropriate risk management strategies are already available.


Challenges for Natural Hazard and Risk Management in Mountain Regions of Europe  

Margreth Keiler and Sven Fuchs

European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps. Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.


Future Lake Development in Deglaciating Mountain Ranges  

Wilfried Haeberli and Fabian Drenkhan

Continued retreat and disappearance of glaciers cause fundamental changes in cold mountain ranges and new landscapes to develop, and the consequences can reach far beyond the still ice-covered areas. A key element is the formation of numerous new lakes where overdeepened parts of glacier beds become exposed. With the first model results from the Swiss Alps around 2010 of distributed glacier thicknesses over entire mountain regions, the derivation of glacier beds as potential future surface topographies became possible. Since then, climate-, water-, and hazard-related quantitative research about future lakes in deglaciating mountains all over the world rapidly evolved. Currently growing and potential future open water bodies are part of new environments in marked imbalance. The surrounding steep icy slopes and peaks are affected by glacial debuttressing and permafrost degradation, with associated long-term stability reduction. This makes the new lakes potential sources of far-reaching floods or debris flows, and they represent serious multipliers of hazards and risks to down-valley humans and their infrastructure. Such hazard and risk aspects are also of primary importance where the lakes potentially connect with hydropower production, freshwater supply, tourism, cultural values, and landscape protection. Planning for sustainable adaptation strategies optimally starts from the anticipation in space and time of possible lake formation in glacier-covered areas by numerical modeling combined with analyses of ice-morphological indications. In a second step, hazards and risks related to worst-case scenarios of possible impact and flood waves must be assessed. These results then define the range of possibilities for use and management of future lakes. Careful weighing of both potential synergies and conflicts is necessary. In some cases, multipurpose projects may open viable avenues for combining solutions related to technical challenges, safety requirements, funding problems, and societal acceptance. Successful implementation of adaptive projects requires early integration of technical-scientific and local knowledge, including the needs and interests of local users and decision makers, into comprehensive, participatory, and long-term planning. A key question is the handling of risks from extreme events with disastrous damage potential and low but increasing probability of occurrence. As future landscapes and lakes develop rapidly and are of considerable socioeconomic and political interest, they present often difficult and complex situations for which solutions must be found soon. Related transdisciplinary work will need to adequately address the sociocultural, economic, and political aspects.


The Human Ecology of Disaster Risk in Cold Mountainous Regions  

Kenneth Hewitt

A range of environmental and social dimensions of disasters occur in or are affected by the mountain cryosphere (MC). Core areas have glaciers and permafrost, intensive freeze-thaw, and seasonally abundant melt waters. A variety of cryospheric hazards is involved, their dangers magnified by steep, high, and rugged terrain. Some unique threats are snow or ice avalanches and glacial lake outburst floods. These highlight the classic alpine zones, but cryospheric hazards occur in more extensive parts of mountain ecosystems, affecting greater populations and more varied settings. Recently, habitat threats have become identified with global climate warming: receding glaciers, declining snowfall, and degrading permafrost. Particularly dangerous prospects arise with changing hazards in the populous mid-latitude and tropical high mountains. Six modern calamities briefly introduce the kinds of dangers and human contexts engaged. Disaster style and scope differs between events confined to the MC, others in which it is only a part or is a source of dangerous processes that descend into surrounding lowlands. The MC is also affected by non-cryospheric hazards, notably earthquake and volcanism. In human terms, the MC shares many disaster risk issues with other regions. Economy and land use, poverty or gender, for instance, are critical aspects of exposure and protections, or lack of them. This situates disaster risk within human ecological and adaptive relations to the predicaments of cold and steepland terrain. A great diversity of habitats and cultures is recognized. “Verticality” offers a unifying theme; characterizing the MC through ways in which life forms, ecosystems, and human settlement adjust to altitudinal zones, to upslope transitions, and the downslope cascades of moisture and geomorphic processes. These also give special importance to multi-hazard chains and long-runout processes including floods. Traditional mountain cultures exploit proximity and seasonality of different resources in the vertical, and avoidance of steepland dangers. This underscores sustainability and changing risk for the many surviving agro-pastoral and village economies and the special predicaments of indigenous cultures. Certain common stereotypes, such as remoteness or fragility of mountain habitats, require caution. They tend to overemphasize environmental determinism and underestimate social factors. Nor should they lead to neglect of wealthier, modernized areas, which also benefit most from geophysical research, dedicated agencies, and expert systems. However, modern developments now affect nearly all MC regions, bringing expanding dangers as well as benefits. Threats related to road networks are discussed, from mining and other large-scale resource extraction. Disaster losses and responses are also being rapidly transformed by urbanization. More broadly, highland–lowland relations can uniquely affect disaster risk, as do transboundary issues and initiatives in the mountains stemming from metropolitan centers. Anthropogenic climate warming generates dangers for mountain peoples but originates mainly from lowland activities. The extent of armed conflict affecting the MC is exceptional. Conflicts affect all aspects of human security. In the mountains as most other places, disaster risk reduction (DRR) policies have tended to favor emergency response. A human ecological approach emphasizes the need to pursue avoidance strategies, precautionary and capacity-building measures. Fundamental humanitarian concerns are essential in such an approach, and point to the importance of good governance and ethics.