1-5 of 5 Results

  • Keywords: social change x
Clear all

Article

Disaster Epistemology, Vulnerability, and Mitigation in Guatemala  

Roberto E. Barrios

From 1976 to 2023, disaster studies experienced a revolution in the way scholars think about natural hazards and disasters. Central to this transformation was the emergence of vulnerability theory, which defines disasters as processes that unfold over long periods because of human practices that enhance the materially destructive and socially disruptive capacities of natural hazards. For researchers involved in developing this analytical perspective, the 1976 earthquake in Guatemala stands out as a prime example of the role of social forces in engendering disaster. Beyond the 1976 earthquake, a review of Guatemala’s history of disasters illuminates the intimate relationship between development practices, socioeconomic inequity, and catastrophes from the pre-Columbian period to the early 21st century. Paralleling the rise of vulnerability theory in the 1970s was the growing interest of disaster scholars in the methodological potential of catastrophes to reveal social structures (e.g., kinship organization) and fault lines (e.g., class and racial structures) that are not readily apparent in times of “normalcy.” Moreover, this interest in the revelatory qualities of disasters was accompanied by a number of hypotheses concerning the relationship between disasters and social change. Once again, Guatemala has offered a number of case studies that illustrate how disasters allow researchers to see social structures, inequities, and contradictions and have shed light on why some disasters are conducive to progressive social change while others are not. Specifically, the case of Guatemala demands social scientists understand disaster vulnerability and the transformative potential of disasters within the broader global political–economic networks of colonial and postcolonial extraction and exploitation. As the 21st century progresses, Guatemala struggles with the local particularities of global disasters. Central America is the tropical region that stands to be most affected by anthropogenic climate change, yet the country’s national government has not implemented the hazard mitigation, urban planning, and inequity reduction programs necessary to counteract these effects. From 2015 to 2023, climate change–related droughts and floods displaced thousands of subsistence farmers, many of whom chose to migrate internationally in search of better livelihoods. Similarly, the COVID-19 pandemic impacted a country with a fragmented and critically underfunded health care system and deeply entrenched inequities between urban and rural and Indigenous and non-Indigenous populations. As a result, Guatemala’s excess mortality rate during the most acute years of the pandemic (2020 and 2021) more than doubled that of Costa Rica, the Central American nation that was best prepared to confront the global health crisis. Despite the notable role of the 1976 earthquake as a classic example of vulnerability theory and the role disasters have played in inciting socio-political upheavals and change, disaster social science research and disaster risk reduction remain poorly developed in Guatemala.

Article

Social Capital and Natural Hazards Governance  

Daniel P. Aldrich, Michelle A. Meyer, and Courtney M. Page-Tan

The impact of disasters continues to grow in the early 21st century, as extreme weather events become more frequent and population density in vulnerable coastal and inland cities increases. Against this backdrop of risk, decision-makers persist in focusing primarily on structural measures to reduce losses centered on physical infrastructure such as berms, seawalls, retrofitted buildings, and levees. Yet a growing body of research emphasizes that strengthening social infrastructure, not just physical infrastructure, serves as a cost-effective way to improve the ability of communities to withstand and rebound from disasters. Three distinct kinds of social connections, including bonding, bridging, and linking social ties, support resilience through increasing the provision of emergency information, mutual aid, and collective action within communities to address natural hazards before, during, and after disaster events. Investing in social capital fosters community resilience that transcends natural hazards and positively affects collective governance and community health. Social capital has a long history in social science research and scholarship, particularly in how it has grown within various disciplines. Broadly, the term describes how social ties generate norms of reciprocity and trust, allow collective action, build solidarity, and foster information and resource flows among people. From education to crime, social capital has been shown to have positive impacts on individual and community outcomes, and research in natural hazards has similarly shown positive outcomes for individual and community resilience. Social capital also can foster negative outcomes, including exclusionary practices, corruption, and increased inequality. Understanding which types of social capital are most useful for increasing resilience is important to move the natural hazards field forward. Many questions about social capital and natural hazards remain, at best, partially answered. Do different types of social capital matter at different stages of disaster—e.g., mitigation, preparedness, response, and recovery? How do social capital’s effects vary across cultural contexts and stratified groups? What measures of social capital are available to practitioners and scholars? What actions are available to decision-makers seeking to invest in the social infrastructure of communities vulnerable to natural hazards? Which programs and interventions have shown merit through field tests? What outcomes can decision-makers anticipate with these investments? Where can scholars find data sets on resilience and social capital? The current state of knowledge about social capital in disaster resilience provides guidance about supporting communities toward more resilience.

Article

Hazards, Social Resilience, and Safer Futures  

Lena Dominelli

The concepts of hazards and risks began in engineering when scientists were measuring the points at which materials would become sufficiently stressed by the pressures upon them that they would break. These concepts migrated into the environmental sciences to assess risk in the natural terrain, including the risks that human activities posed to the survival of animals (including fish in streams) and plants in the biosphere. From there, they moved to the social sciences, primarily in formal disaster discourses. With the realization that modern societies constantly faced risks cushioned in uncertainties within everyday life, the media popularized the concept of risk and its accoutrements, including mitigation, adaptation, and preventative measures, among the general populace. A crucial manifestation of this is the media’s accounts of the risks affecting different groups of people or places contracting Covid-19, which burst upon a somnambulant world in December 2019 in Wuhan, China. The World Health Organization (WHO) declared Covid-19 a pandemic on March 11, 2020. Politicians of diverse hues sought to reassure nervous inhabitants that they had followed robust, scientific advice on risks to facilitate “flattening the curve” by spreading the rate of infection in different communities over a longer period to reduce demand for public health services. Definitions of hazard, risk, vulnerability, and resilience evolved as they moved from the physical sciences into everyday life to reassure edgy populations that their social systems, especially the medical ones, could cope with the demands of disasters. While most countries have managed the risk Covid-19 posed to health services, this has been at a price that people found difficult to accept. Instead, as they reflected upon their experiences of being confronted with the deaths of many loved ones, especially among elders in care homes; adversities foisted upon the disease’s outcomes by existing social inequalities; and loss of associative freedoms, many questioned whether official mitigation strategies were commensurate with apparent risks. The public demanded an end to such inequities and questioned the bases on which politicians made their decisions. They also began to search for certainties in the social responses to risk in the hopes of building better futures as other institutions, schools, and businesses went into lockdown, and social relationships and people’s usual interactions with others ceased. For some, it seemed as if society were crumbling around them, and they wanted a better version of their world to replace the one devastated by Covid-19 (or other disasters). Key to this better version was a safer, fairer, more equitable and reliable future. Responses to the risks within Covid-19 scenarios are similar to responses to other disasters, including earthquakes, volcanic eruptions, wildfires, tsunamis, storms, extreme weather events, and climate change. The claims of “building back better” are examined through a resilience lens to determine whether such demands are realizable, and if not, what hinders their realization. Understanding such issues will facilitate identification of an agenda for future research into mitigation, adaptation, and preventative measures necessary to protect people and the planet Earth from the harm of subsequent disasters.

Article

Natural Hazards Governance in India  

Anshu Sharma and Sunny Kumar

India faces a very broad range of hazards due to its wide geoclimatic spread. This, combined with deep-rooted social, economic, physical, and institutional vulnerabilities, makes India one of the highest disaster-affected countries in the world. Natural hazards have gained higher visibility due to an increasing frequency and magnitude of their impact in recent decades, and efforts to manage disasters have been largely unable to keep pace with the growing incidences, scale, and complexities of disaster events. A number of mega events between 1990 and 2005, including earthquakes, cyclones, floods, and a tsunami, created momentum in decision making to look at disasters critically and to push for a shift from response to mitigation and preparedness. While efforts were put in place for appropriate legislation, institution building, and planning, these processes were long drawn out and time and resource intensive. It has taken years for the governance systems to begin showing results on the ground. While these efforts were being formulated, the changing face of disasters began to present new challenges. Between 2005 and 2015, a number of unprecedented events shook the system, underscoring the increasing variability and thus unpredictability of natural hazards as a new normal. Events in this period included cloudbursts and flash floods in the deserts, droughts in areas that are normally flood prone, abnormal hail and storm events, and floods of rare fury. To augment the shifting natural hazard landscape, urbanization and changing lifestyles have made facing disasters more challenging. For example, having entire cities run out of water is a situation that response systems are not geared to address. The future will be nothing like the past, with climate change adding to natural hazard complexities. Yet, the tools to manage hazards and reduce vulnerabilities are also evolving to unprecedented levels of sophistication. Science, people, and innovations will be valuable instruments for addressing the challenges of natural hazards in the times ahead.

Article

The Human Ecology of Disaster Risk in Cold Mountainous Regions  

Kenneth Hewitt

A range of environmental and social dimensions of disasters occur in or are affected by the mountain cryosphere (MC). Core areas have glaciers and permafrost, intensive freeze-thaw, and seasonally abundant melt waters. A variety of cryospheric hazards is involved, their dangers magnified by steep, high, and rugged terrain. Some unique threats are snow or ice avalanches and glacial lake outburst floods. These highlight the classic alpine zones, but cryospheric hazards occur in more extensive parts of mountain ecosystems, affecting greater populations and more varied settings. Recently, habitat threats have become identified with global climate warming: receding glaciers, declining snowfall, and degrading permafrost. Particularly dangerous prospects arise with changing hazards in the populous mid-latitude and tropical high mountains. Six modern calamities briefly introduce the kinds of dangers and human contexts engaged. Disaster style and scope differs between events confined to the MC, others in which it is only a part or is a source of dangerous processes that descend into surrounding lowlands. The MC is also affected by non-cryospheric hazards, notably earthquake and volcanism. In human terms, the MC shares many disaster risk issues with other regions. Economy and land use, poverty or gender, for instance, are critical aspects of exposure and protections, or lack of them. This situates disaster risk within human ecological and adaptive relations to the predicaments of cold and steepland terrain. A great diversity of habitats and cultures is recognized. “Verticality” offers a unifying theme; characterizing the MC through ways in which life forms, ecosystems, and human settlement adjust to altitudinal zones, to upslope transitions, and the downslope cascades of moisture and geomorphic processes. These also give special importance to multi-hazard chains and long-runout processes including floods. Traditional mountain cultures exploit proximity and seasonality of different resources in the vertical, and avoidance of steepland dangers. This underscores sustainability and changing risk for the many surviving agro-pastoral and village economies and the special predicaments of indigenous cultures. Certain common stereotypes, such as remoteness or fragility of mountain habitats, require caution. They tend to overemphasize environmental determinism and underestimate social factors. Nor should they lead to neglect of wealthier, modernized areas, which also benefit most from geophysical research, dedicated agencies, and expert systems. However, modern developments now affect nearly all MC regions, bringing expanding dangers as well as benefits. Threats related to road networks are discussed, from mining and other large-scale resource extraction. Disaster losses and responses are also being rapidly transformed by urbanization. More broadly, highland–lowland relations can uniquely affect disaster risk, as do transboundary issues and initiatives in the mountains stemming from metropolitan centers. Anthropogenic climate warming generates dangers for mountain peoples but originates mainly from lowland activities. The extent of armed conflict affecting the MC is exceptional. Conflicts affect all aspects of human security. In the mountains as most other places, disaster risk reduction (DRR) policies have tended to favor emergency response. A human ecological approach emphasizes the need to pursue avoidance strategies, precautionary and capacity-building measures. Fundamental humanitarian concerns are essential in such an approach, and point to the importance of good governance and ethics.