1-3 of 3 Results  for:

  • Keywords: response x
Clear all

Article

Humankind has always lived with natural hazards and their consequences. While the frequency and intensity of geological processes may have remained relatively stable, population growth and infrastructure development in areas susceptible to experiencing natural hazards has increased societal risk and the losses experienced from hazard activity. Furthermore, increases in weather-related (e.g., hurricanes, wildfires) hazards emanating from climate change will increase risk in some countries and result in others having to deal with natural hazard risk for the first time. Faced with growing and enduring risk, disaster risk reduction (DRR) strategies will play increasingly important roles in facilitating societal sustainability. This article discusses how readiness or preparedness makes an important contribution to comprehensive DRR. Readiness is defined here in terms of those factors that facilitate people’s individual and collective capability to anticipate, cope with, adapt to, and recover from hazard consequences. This article first discusses the need to conceptualize readiness as comprising several functional categories (structural, survival/direct action, psychological, community/capacity building, livelihood and community-agency readiness). Next, the article discusses how the nature and extent of people’s readiness is a function of the interaction between the information available and the personal, family, community and societal factors used to interpret information and support readiness decision-making. The health belief model (HBM), protection motivation theory (PMT), person-relative-to-event (PrE) theory, theory of planned behavior (TPB), critical awareness (CA), protective action decision model (PADM), and community engagement theory (CET) are used to introduce variables that inform people’s readiness decision-making. A need to consider readiness as a developmental process is discussed and identifies how the variables introduced in the above theories play different roles at different stages in the development of comprehensive readiness. Because many societies must learn to coexist with several sources of hazard, an “all-hazards” approach is required to facilitate the capacity of societies and their members to be resilient in the face of the various hazard consequences they may have to contend with. This article discusses research into readiness for the consequences that arise from earthquake, volcanic, flood, hurricane, and tornado hazards. Furthermore, because hazards transcend national and cultural divides, a comprehensive conceptualization of readiness must accommodate a cross-cultural perspective. Issues in the cross-cultural testing of theory is discussed, as is the need for further work into the relationship between readiness and culture-specific beliefs and processes.

Article

Emergency and disaster planning involves a coordinated, co-operative process of preparing to match urgent needs with available resources. The phases are research, writing, dissemination, testing, and updating. Hence, an emergency plan needs to be a living document that is periodically adapted to changing circumstances and that provides a guide to the protocols, procedures, and division of responsibilities in emergency response. Emergency planning is an exploratory process that provides generic procedures for managing unforeseen impacts and should use carefully constructed scenarios to anticipate the needs that will be generated by foreseeable hazards when they strike. Plans need to be developed for specific sectors, such as education, health, industry, and commerce. They also need to exist in a nested hierarchy that extends from the local emergency response (the most fundamental level), through the regional tiers of government, to the national and international levels. Failure to plan can be construed as negligence because it would involve failing to anticipate needs that cannot be responded to adequately by improvisation during an emergency. Plans are needed, not only for responding to the impacts of disaster, but also to maintain business continuity while managing the crisis, and to guide recovery and reconstruction effectively. Dealing with disaster is a social process that requires public support for planning initiatives and participation by a wide variety of responders, technical experts and citizens. It needs to be sustainable in the light of challenges posed by non-renewable resource utilization, climate change, population growth, and imbalances of wealth. Although, at its most basic level, emergency planning is little more than codified common sense, the increasing complexity of modern disasters has required substantial professionalization of the field. This is especially true in light of the increasing role in emergency response of information and communications technology. Disaster planners and coordinators are resource managers, and in the future, they will need to cope with complex and sophisticated transfers of human and material resources. In a globalizing world that is subject to accelerating physical, social, and economic change, the challenge of managing emergencies well depends on effective planning and foresight, and the ability to connect disparate elements of the emergency response into coherent strategies.

Article

Humankind is becoming increasingly dependent on timely flood warnings. Dependence is being driven by an increasing frequency and intensity of heavy rainfall events, a growing number of disruptive and damaging floods, and rising sea levels associated with climate change. At the same time, the population living in flood-risk areas and the value of urban and rural assets exposed to floods are growing rapidly. Flood warnings are an important means of adapting to growing flood risk and learning to live with it by avoiding damage, loss of life, and injury. Such warnings are increasingly being employed in combination with other flood-risk management measures, including large-scale mobile flood barriers and property-level protection measures. Given that lives may well depend on effective flood warnings and appropriate warning responses, it is crucial that the warnings perform satisfactorily, particularly by being accurate, reliable, and timely. A sufficiently long warning lead time to allow precautions to be taken and property and people to be moved out of harm’s way is particularly important. However, flood warnings are heavily dependent on the other components of flood forecasting, warning, and response systems of which they are a central part. These other components—flood detection, flood forecasting, warning communication, and warning response—form a system that is characterized as a chain, each link of which depends on the other links for effective outcomes. Inherent weaknesses exist in chainlike processes and are often the basis of warning underperformance when it occurs. A number of key issues confront those seeking to create and successfully operate flood warning systems, including (1) translating technical flood forecasts into warnings that are readily understandable by the public; (2) taking legal responsibility for warnings and their dissemination; (3) raising flood-risk awareness; (4) designing effective flood warning messages; (5) knowing how best and when to communicate warnings; and (6) addressing uncertainties surrounding flood warnings. Flood warning science brings together a large body of research findings from a particularly wide range of disciplines ranging from hydrometeorological science to social psychology. In recent decades, major advances have been made in forecasting fluvial and coastal floods. Accurately forecasting pluvial events that cause surface-water floods is at the research frontier, with significant progress being made. Over the same time period, impressive advances in a variety of rapid, personalized communication means has transformed the process of flood warning dissemination. Much is now known about the factors that constrain and aid appropriate flood warning responses both at the individual and at organized, flood emergency response levels, and a range of innovations are being applied to improve response effectiveness. Although the uniqueness of each flood and the inherent unpredictability involved in flood events means that sometimes flood warnings may not perform as expected, flood warning science is helping to minimize these occurrences.