1-18 of 18 Results

  • Keywords: flood risk x
Clear all

Article

David Proverbs and Jessica Lamond

Flood resilient construction has become an essential component of the integrated approach to flood risk management, now widely accepted through the concepts of making space for water and living with floods. Resilient construction has been in place for centuries, but only fairly recently has it been recognized as part of this wider strategy to manage flood risk. Buildings and the wider built environment are known to play a key role in flood risk management, and when buildings are constructed on or near to flood plains there is an obvious need to protect these. Engineered flood defense systems date back centuries, with early examples seen in China and Egypt. Levees were first built in the United States some 150 years ago, and were followed by the development of flood control acts and regulations. In 1945, Gilbert Fowler White, the so-called “father of floodplain management,” published his influential thesis which criticized the reliance on engineered flood defenses and began to change these approaches. In Europe, a shortage of farmable land led to the use of land reclamation schemes and the ensuing Land Drainage acts before massive flood events in the mid-20th century led to a shift in thinking towards the engineered defense schemes such as the Thames Barrier and Dutch dyke systems. The early 21st century witnessed the emergence of the “living with water” philosophy, which has resulted in the renewed understanding of flood resilience at a property level. The scientific study of construction methods and building technologies that are robust to flooding is a fairly recent phenomenon. There are a number of underlying reasons for this, but the change in flood risk philosophy coupled with the experience of flood events and the long process of recovery is helping to drive research and investment in this area. This has led to a more sophisticated understanding of the approaches to avoiding damage at an individual property level, categorized under three strategies, namely avoidance technology, water exclusion technology, and water entry technology. As interest and policy has shifted to water entry approaches, alongside this has been the development of research into flood resilient materials and repair and reinstatement processes, the latter gaining much attention in the recognition that experience will prompt resilient responses and that the point of reinstatement provides a good opportunity to install resilient measures. State-of-the-art practices now center on avoidance strategies incorporating planning legislation in many regions to prohibit or restrict new development in flood plains. Where development pressures mean that new buildings are permitted, there is now a body of knowledge around the impact of flooding on buildings and flood resilient construction and techniques. However, due to the variety and complexity of architecture and construction styles and varying flood risk exposure, there remain many gaps in our understanding, leading to the use of trial and error and other pragmatic approaches. Some examples of avoidance strategies include the use of earthworks, floating houses, and raised construction. The concept of property level flood resilience is an emerging concept in the United Kingdom and recognizes that in some cases a hybrid approach might be favored in which the amount of water entering a property is limited, together with the likely damage that is caused. The technology and understanding is moving forward with a greater appreciation of the benefits from combining strategies and property level measures, incorporating water resistant and resilient materials. The process of resilient repair and considerate reinstatement is another emerging feature, recognizing that there will be a need to dry, clean, and repair flood-affected buildings. The importance of effective and timely drying of properties, including the need to use materials that dry rapidly and are easy to decontaminate, has become more apparent and is gaining attention. Future developments are likely to concentrate on promoting the uptake of flood resilient materials and technologies both in the construction of new and in the retrofit and adaptation of existing properties. Further development of flood resilience technology that enhances the aesthetic appeal of adapted property would support the uptake of measures. Developments that reduce cost or that offer other aesthetic or functional advantages may also reduce the barriers to uptake. A greater understanding of performance standards for resilient materials will help provide confidence in such measures and support uptake, while further research around the breathability of materials and concerns around mold and the need to avoid creating moisture issues inside properties represent some of the key areas.

Article

Jason Thistlethwaite and Daniel Henstra

Natural hazards are a complex governance problem. Managing the risks associated with natural hazards requires action at all scales—from household to national—but coordinating these nested responses to achieve a vertically cohesive course of action is challenging. Moreover, though governments have the legal authority and legitimacy to mandate or facilitate natural hazard risk reduction, non-governmental actors such as business firms, industry associations, research organizations and non-profit organizations hold much of the pertinent knowledge and resources. This interdependence demands horizontal collaboration, but coordinating risk reduction across organizational divides is fraught with challenges and requires skillful leadership. Flood risk management (FRM)—an integrated strategy to reduce the likelihood and impacts of flooding—demonstrates the governance challenge presented by natural hazards. By engaging stakeholders, coordinating public and private efforts, and employing a diversity of policy instruments, FRM can strengthen societal resilience, achieve greater efficiency, and enhance the legitimacy of decisions and actions to reduce flood risk. Implementing FRM, however, requires supportive flood risk governance arrangements that facilitate vertical and horizontal policy coordination by establishing strategic goals, negotiating roles and responsibilities, aligning policy instruments, and allocating resources.

Article

Throughout history, flood management practice has evolved in response to flood events. This heuristic approach has yielded some important incremental shifts in both policy and planning (from the need to plan at a catchment scale to the recognition that flooding arises from multiple sources and that defenses, no matter how reliable, fail). Progress, however, has been painfully slow and sporadic, but a new, more strategic, approach is now emerging. A strategic approach does not, however, simply sustain an acceptable level of flood defence. Strategic Flood Risk Management (SFRM) is an approach that relies upon an adaptable portfolio of measures and policies to deliver outcomes that are socially just (when assessed against egalitarian, utilitarian, and Rawlsian principles), contribute positively to ecosystem services, and promote resilience. In doing so, SFRM offers a practical policy and planning framework to transform our understanding of risk and move toward a flood-resilient society. A strategic approach to flood management involves much more than simply reducing the chance of damage through the provision of “strong” structures and recognizes adaptive management as much more than simply “wait and see.” SFRM is inherently risk based and implemented through a continuous process of review and adaptation that seeks to actively manage future uncertainty, a characteristic that sets it apart from the linear flood defense planning paradigm based upon a more certain view of the future. In doing so, SFRM accepts there is no silver bullet to flood issues and that people and economies cannot always be protected from flooding. It accepts flooding as an important ecosystem function and that a legitimate ecosystem service is its contribution to flood risk management. Perhaps most importantly, however, SFRM enables the inherent conflicts as well as opportunities that characterize flood management choices to be openly debated, priorities to be set, and difficult investment choices to be made.

Article

Marian Muste and Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.

Article

Communities facing urban flood risk have access to powerful flood simulation software for use in disaster-risk-reduction (DRR) initiatives. However, recent research has shown that flood risk continues to escalate globally, despite an increase in the primary outcome of flood simulation: increased knowledge. Thus, a key issue with the utilization of urban flood models is not necessarily development of new knowledge about flooding, but rather the achievement of more socially robust and context-sensitive knowledge production capable of converting knowledge into action. There are early indications that this can be accomplished when an urban flood model is used as a tool to bring together local lay and scientific expertise around local priorities and perceptions, and to advance improved, target-oriented methods of flood risk communication. The success of urban flood models as a facilitating agent for knowledge coproduction will depend on whether they are trusted by both the scientific and local expert, and to this end, whether the model constitutes an accurate approximation of flood dynamics is a key issue. This is not a sufficient condition for knowledge coproduction, but it is a necessary one. For example, trust can easily be eroded at the local level by disagreements among scientists about what constitutes an accurate approximation. Motivated by the need for confidence in urban flood models, and the wide variety of models available to users, this article reviews progress in urban flood model development over three eras: (1) the era of theory, when the foundation of urban flood models was established using fluid mechanics principles and considerable attention focused on development of computational methods for solving the one- and two-dimensional equations governing flood flows; (2) the era of data, which took form in the 2000s, and has motivated a reexamination of urban flood model design in response to the transformation from a data-poor to a data-rich modeling environment; and (3) the era of disaster risk reduction, whereby modeling tools are put in the hands of communities facing flood risk and are used to codevelop flood risk knowledge and transform knowledge to action. The article aims to inform decision makers and policy makers regarding the match between model selection and decision points, to orient the engineering community to the varied decision-making and policy needs that arise in the context of DRR activities, to highlight the opportunities and pitfalls associated with alternative urban flood modeling techniques, and to frame areas for future research.

Article

The rapid increase in losses from flooding underlines the importance of risk reduction efforts to prevent or at least mitigate the damaging impacts that floods can bring to communities, businesses, and countries. This article provides an overview of how the science of disaster risk management has improved understanding of pre-event risk reduction [or disaster risk reduction (DRR)]. Implementation, however, is still lagging, particularly when compared to expenditure for recovery and repair after a flood event. In response, flood insurance is increasingly being suggested as a potential lever for risk reduction, despite concerns about moral hazard. The article considers the literature that has emerged on this topic and discusses if the conceptual efforts of linking flood insurance and risk reduction have led to practical action. Overall, there is limited evidence of flood insurance effectively promoting risk reduction. To the extent there is, it suggests that more complex behavioral aspects are also at play. Further evidence is required to support this potential role, particularly around data and risk assessment, and the viability of different risk reduction measures.

Article

Brenden Jongman, Hessel C. Winsemius, Stuart A. Fraser, Sanne Muis, and Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.

Article

Bruno Merz

Floods affect more people worldwide than any other natural hazard. Flood risk results from the interplay of a range of processes. For river floods, these are the flood-triggering processes in the atmosphere, runoff generation in the catchment, flood waves traveling through the river network, possibly flood defense failure, and finally, inundation and damage processes in the flooded areas. In addition, ripple effects, such as regional or even global supply chain disruptions, may occur. Effective and efficient flood risk management requires understanding and quantifying the flood risk and its possible future developments. Hence, risk analysis is a key element of flood risk management. Risk assessments can be structured according to three questions: What can go wrong? How likely is it that it will happen? If it goes wrong, what are the consequences? Before answering these questions, the system boundaries, the processes to be included, and the detail of the analysis need to be carefully selected. One of the greatest challenges in flood risk analyses is the identification of the set of failure or damage scenarios. Often, extreme events beyond the experience of the analyst are missing, which may bias the risk estimate. Another challenge is the estimation of probabilities. There are at most a few observed events where data on the flood situation, such as inundation extent, depth, and loss are available. That means that even in the most optimistic situation there are only a few data points to validate the risk estimates. The situation is even more delicate when the risk has to be quantified for important infrastructure objects, such as breaching of a large dam or flooding of a nuclear power plant. Such events are practically unrepeatable. Hence, estimating of probabilities needs to be based on all available evidence, using observations whenever possible, but also including theoretical knowledge, modeling, specific investigations, experience, or expert judgment. As a result, flood risk assessments are often associated with large uncertainties. Examples abound where authorities, people at risk, and disaster management have been taken by surprise due to unexpected failure scenarios. This is not only a consequence of the complexity of flood risk systems, but may also be attributed to cognitive biases, such as being overconfident in the risk assessment. Hence, it is essential to ask: How wrong can the risk analysis be and still guarantee that the outcome is acceptable?

Article

Anna Murgatroyd and Simon Dadson

Flooding is a natural hazard with the potential to cause damage at the local, national, and global scale. Flooding is a natural product of heavy precipitation and increased runoff. It may also arise from elevated groundwater tables, coastal inundation, or failed drainage systems. Flooded areas can be identified as land beyond the channel network covered by water. Although flooding can cause significant damage to urban developments and infrastructure, it may be beneficial to the natural environment. Preemptive actions may be taken to protect communities at risk of inundation that are not able to relocate to an area not at risk of flooding. Adaptation measures include flood defenses, river channel modification, relocation, and active warning systems. Natural flood management (NFM) interventions are designed to restore, emulate, or enhance catchment processes. Such interventions are common in upper reaches of the river and in areas previously transformed by agriculture and urban development. Natural techniques can be categorized into three groups: water retention through management of infiltration and overland flow, managing channel connectivity and conveyance, and floodplain conveyance and storage. NFM may alter land use, improve land management, repair river channel morphology, enhance the riparian habitat, enrich floodplain vegetation, or alter land drainage. The range of natural flood management options allows a diverse range of flood hazards to be considered. As a consequence, there is an abundance of NFM case studies from contrasting environments around the globe, each addressing a particular set of flood risks. Much of the research supporting the use of NFM highlights both the benefits and costs of working with natural processes to reduce flood hazards in the landscape. However, there is a lack of quantitative evidence of the effectiveness of measures, both individually and in combination, especially at the largest scales and for extreme floods. Most evidence is based on modeling studies and observations often relate to a specific set of upstream measures that are challenging to apply elsewhere.

Article

Giuliano Di Baldassarre

Fatalities and economic losses caused by floods are dramatically increasing in many regions of the world, and there is serious concern about future flood risk given the potentially negative effects of climatic and socio-economic changes. Over the past decades, numerous socio-economic studies have explored human responses to floods—demographic, policy and institutional changes following the occurrence of extreme events. Meanwhile, many hydrological studies have investigated human influences on floods, such as changes in frequency, magnitude, and spatial distribution of floods caused by urbanization or by implementation of risk reduction measures. Research in socio-hydrology is providing initial insights into the complex dynamics of risk resulting from the interplay (both responses and influences) between floods and people. Empirical research in this field has recently shown that traditional methods for flood risk assessment cannot capture the complex dynamics of risk emerging from mutual interactions and continuous feedback mechanisms between hydrological and social processes. It has also been shown that, while risk reduction strategies built on these traditional methods often work in the short term, they might lead to unintended consequences in the longer term. Besides empirical studies, a number of socio-hydrological models have been recently proposed to conceptualize human/flood interactions, to explain the dynamics emerging from this interplay, and to explore possible future trajectories of flood risk. Understanding the interplay between floods and societies can improve our ability to interpret flood risk changes over time and contribute to developing better policies and measures that will reduce the negative impacts of floods while maintaining the benefits of hydrological variability.

Article

Thomas Thaler, David Shively, Jacob Petersen-Perlman, Lenka Slavikova, and Thomas Hartmann

The frequency and severity of extreme weather events are expected to increase due to climate change. These developments and challenges have focused the attention of policymakers on the question of how to manage natural hazards. The main political discourse revolves around the questions of how we can make our society more resilient for possible future events. A central challenge reflects collective choices, which affect natural hazards governance, risk, and individual and societal vulnerability. In particular, transboundary river basins present difficult and challenging decisions at local, regional, national, and international levels as they involve and engage large numbers of stakeholders. Each of these groups has different perspectives and interests in how to design and organize flood risk management, which often hinder transnational collaborations in terms of upstream–downstream or different riverbed cooperation. Numerous efforts to resolve these conflicts have historically been tried across the world, particularly in relation to institutional cooperation. Consequently, greater engagement of different countries in management of natural hazards risks could decrease international conflicts and increase capacity at regional and local levels to adapt to future hazard events. Better understanding of the issues, perspectives, choices, and potential for conflict, and clear sharing of responsibilities, is crucial for reducing impacts of future events at the transboundary level.

Article

In architecture, mitigation reduces the magnitude of climate change by reducing demand for resources; anticipatory adaptation improves performance against hazards; and planned adaptation creates policies and codes to support adaptation. Adaptation prepares for a future with intensifying climate conditions. The built environment must prepare for challenges that may be encountered during the service life of the building, and reduce human exposure to hazards. Structures are responsible for about 39% of the primary energy consumption worldwide and 24% of the greenhouse gas emissions, significantly contributing to the causes of climate change. Measures to reduce demand in the initial construction and over the life cycle of the building operation directly impact the climate. Improving performance against hazards requires a suite of modifications to counter specific threats. Adaptation measures may address higher temperatures, extreme precipitation, stormwater flooding, sea-level rise, hurricanes, drought, soil subsidence, wildfires, extended pest ranges, and multiple hazards. Because resources to meet every threat are inadequate, actions with low costs now which offer high benefits under a range of predicted future climates become high-priority solutions. Disaster risk is also reduced by aligning policies for planning and construction with anticipated hazards. Climate adaptation policies based on the local effects of climate change are a new tool to communicate risk and share resources. Building codes establish minimum standards for construction, so incorporating adaptation strategies into codes ensures that the resulting structures will survive a range of uncertain futures.

Article

Flood Risk Management (FRM) calls for stakeholders from multiple technical and social spheres to plan and implement policies and actions to manage flooding successfully. To work effectively across boundaries of knowledge, practice, priority, scale, institutions, and language created by such interdisciplinary or inter-stakeholder work, it is often necessary to employ intermediaries to create communication pathways between groups and spaces. Intermediaries (also sometimes referred to as mediators or boundary spanners) are responsible for managing boundaries in such a way that multiple actors are able to communicate effectively with limited ambiguity or frustration. Sometimes, intermediaries enable two actors to come together who would usually not interact. For FRM, knowledge and experiences should ideally be brought together collaboratively and smoothly, whilst accounting for the diversity of perspectives and priorities between stakeholders involved. Intermediaries may be organizations of humans, e.g., a public communications department; or objects, e.g., a computer model, website, or maps. Recognizing the utility of objects as intermediaries is important for understanding the multiplicity of mechanisms used to communicate FRM between experts and nonspecialist publics. Charting how intermediaries bridge different boundaries, we see the diversity and utility of their work. Inspecting the construction of boundary objects as intermediaries allows the actors involved in their creation and definition to be identified and analyzed. This is important as it may contribute an understanding of how just and representative FRM decision making is. Since the 1980s, various academic literatures from science and technology studies (STS) to organizational studies have addressed the role of intermediaries and mediators, particularly in relation to business management, computer sciences, and biomedicine. However, in FRM where risk analysis and communication is king, discussing how to manage pertinent and credible transboundary information is also important.

Article

Natural hazard governance in countries in the Global South is shifting from a state-centered approach, which has predominantly focused on disaster risk management, with limited involvement of citizens, and a disaster response to a hazard event, to an approach which is more participatory, inclusive and proactive. This emerging approach aims to be transformative, as it draws on the knowledge and skills of multiple actors, including community members; focuses on risk reduction and adaptation; and builds new models of participatory risk governance at the local and city scale. Progressive legislation has played a major role in supporting this evolution toward a more transformative approach to natural hazard governance, which recognizes the political economy and political ecology of risk. This includes acknowledging the vulnerability of communities in particular contexts, and the need to address development deficits to build resilience in the face of natural hazards. However, a significant gap exists between progressive legislation and policy, and implementation. Informal settlements experience some of the worst impacts of natural hazards due to their exposure, vulnerability, and social and political marginalization. However, they are also resilient and adaptive, developing innovative approaches in partnership with the state and other actors, to plan for and respond to natural hazards. Empirical research on particular case studies where these shifts in governance are evident, is necessary to explore the opportunities for and barriers to transformative, participatory natural hazard governance in cities in the South.

Article

Agent-based models have facilitated greater understanding of flood insurance futures, and will continue to advance this field as modeling technology develops further. As the pressures of climate-change increase and global populations grow, the insurance industry will be required to adapt to a less predictable operating environment. Complicating the future of flood insurance is the role flood insurance plays within a state, as well as how insurers impact the interests of other stakeholders, such as mortgage providers, property developers, and householders. As such, flood insurance is inextricably linked with the politics, economy, and social welfare of a state, and can be considered as part of a complex system of changing environments and diverse stakeholders. Agent-based models are capable of modeling complex systems, and, as such, have utility for flood insurance systems. These models can be considered as a platform in which the actions of autonomous agents, both individuals and collectives, are simulated. Cellular automata are the lowest level of an agent-based model and are discrete and abstract computational systems. These automata, which operate within a local and/or universal environment, can be programmed with characteristics of stakeholders and can act independently or interact collectively. Due to this, agent-based models can capture the complexities of a multi-stakeholder environment displaying diversity of behavior and, concurrently, can cater for the changing flood environment. Agent-based models of flood insurance futures have primarily been developed for predictive purposes, such as understanding the impact of introductions of policy instruments. However, the ways in which these situations have been approached by researchers have varied; some have focused on recreating consumer behavior and psychology, while others have sought to recreate agent interactions within a flood environment. The opportunities for agent-based models are likely to become more pronounced as online data becomes more readily available and artificial intelligence technology supports model development.

Article

Philip Bubeck, Antje Otto, and Juergen Weichselgartner

Floods remain the most devastating natural hazard globally, despite substantial investments in flood prevention and management in recent decades. Fluvial floods, such as the ones in Pakistan in 2010 and Thailand in 2011, can affect entire countries and cause severe economic and human losses. Also, coastal floods can inflict substantial harm owing to their destructive forces in terms of wave and tidal energy. A flood type that received growing attention in recent years is flooding from pluvial events (heavy rainfall). Even though these are locally confined, their sudden onset and unpredictability pose a danger to areas that are generally not at risk from flooding. In the future, it is projected that flood risk will increase in many regions both because of the effects of global warming on the hydrological cycle and the continuing concentration of people and economic assets in risk-prone areas. Floods have a large variety of societal impacts that span across space and time. While some of these impacts are obvious and have been well researched, others are more subtle and less is known about their complex processes and long-term effects. The most immediate and apparent impact of floods is direct damage caused by physical contact between floodwaters and economic assets, cultural heritage, or human beings, with the result for humans being injuries and deaths. Direct flood damage can amount to billions of US dollars for single events, such as the floods in the Danube and Elbe catchment in Central Europe in 2002 and 2013. More indirect economic implications are the losses that occur outside of the flood event in space and time, such as losses due to business disruption. The flood in Thailand in 2011, for instance, resulted in a lack of auto parts supplies and consequently the shutdown of car manufacturing within and outside the flood zone. Floods also have long-term indirect impacts on flood-affected people and communities. Experiencing property damage and losing important personal belongings can have a negative psychological effect on flood victims. Much less is known about this type of flood impact: how long do these impacts last? What makes some people or communities recover faster than others from financial losses and emotional stress? Moreover, flood impacts are not equally distributed across different groups of society. Often, poor, elderly, and marginalized societal groups are particularly vulnerable to the effects of flooding inasmuch as these groups generally have little social, human, and financial coping capacities. In many countries, women regularly bear a disproportionately high burden because of their societal status. Finally, severe floods often provide so-called windows of opportunities, enabling rapid policy change, resulting in new flood risk management policies. Such newly adopted policy arrangements can lead to societal conflicts over issues of interests, equity, and fairness. For instance, flood events often trigger large-scale investment in flood defense infrastructure, which are associated with high construction costs. Although these costs are usually borne by the taxpayer, often only a small proportion of society shares in their benefits. In addition, societal conflict can arise concerning where to build structural measures; what impacts these measures have on the ground regarding economic development potentials, different kinds of uses, and nature protection; and which effects are expected downstream. In such controversies, issues of participation and decision making are central and often highly contested. While floods are usually associated with negative societal impacts in industrialized countries, they also have beneficial impacts on nature and society. In many parts of the world, the livelihood of millions of people depends on the recurring occurrence of flooding. For instance, farming communities in or near floodplains rely upon regular floodwaters that carry nutrients and sediments, enriching the soil and making it fertile for cultivation.

Article

Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems. That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.

Article

Svetlana Badina and Boris Porfiriev

A major implication of the dissolution of the Soviet Union in 1991 involved the radical transformation of the national security system. Its fundamentally militaristic paradigm focused on civil defense to prepare and protect communities against the strikes of conventional and nuclear warheads. It called for a more comprehensive and balanced civil protection policy oriented primarily to the communities’ and facilities’ preparedness and response to natural hazards impact and disasters. This change in policy was further catalyzed by the catastrophic results of the major disasters in the late 1980s, such as the Chernobyl nuclear power plant explosion of 1986 and the Armenian earthquake of 1988. As a result, in 1989, a specialized body was organized, the State Emergency Commission at the USSR Council of Ministers. A year later in the Russian Federation (at that time a part of the Soviet Union), an analogous commission was established. In 1991, it was reorganized into the State Committee for Civil Defense, Emergency Management, and Natural Disasters Response at the request of the president of the Russian Federation (EMERCOM). In 1994, this was replaced by the much more powerful Ministry of the Russian Federation for Civil Defense, Emergency Management, and Natural Disasters Response (which kept the abbreviation EMERCOM). In the early 21st century, this ministry is the key government body responsible for (a) development and implementation of the policy for civil defense and the regions’ protection from natural and technological hazards and disasters, and (b) leading and coordinating activities of the federal executive bodies in disaster policy areas within the Russian Federation’s Integrated State System for Emergency Prevention and Response (EPARIS). In addition, as well as in the former Soviet Union, the scientific and research organizations’ efforts to collect relevant data, monitor events, and conduct field and in-house studies to reduce the risk of disasters is crucially important. The nature of EPARIS is mainly a function of the geographic characteristics of the Russian Federation. These include the world’s largest national territory, which is vastly extended both longitudinally and latitudinally, a relatively populous Arctic region, large mountain systems, and other characteristics that create high diversity in the natural environment and combinations of natural hazards. Meanwhile, along with the natural conditions of significant size and a multiethnic composition of the population, distinctive features of a historical development path and institutional factors also contribute to diversity of settlement patterns, a high degree of economic development, and a level and quality of human life both within and between the regions of Russia. For instance, even within one of the region’s urbanized areas with a high-quality urban environment and developed socioeconomic institutions, neighboring communities exist with a traditional lifestyle and economic relations, primitive technological tools, and so on (e.g., indigenous small ethnic groups of the Russian North, Siberia, and the Far East). The massive spatial disparity of Russia creates different conditions for exposure and vulnerability of the regions to natural hazards’ impacts on communities and facilities, which has to be considered while preparing, responding to, and recovering from disasters. For this reason, EMERCOM’s organizational structure includes a central (federal) headquarters as well as Central, Northwestern, Siberian, Southern, and Moscow regional territorial branches and control centers for emergency management in all of the 85 administrative entities (subjects) of the Russian Federation. Specific features of both the EMERCOM territorial units and ministries and EPARIS as a whole coping with disasters are considered using the 2013 catastrophic flood in the Amur River basin in the Far East of Russia as a case study.