1-8 of 8 Results

  • Keywords: flood risk reduction x
Clear all

Article

Jason Thistlethwaite and Daniel Henstra

Natural hazards are a complex governance problem. Managing the risks associated with natural hazards requires action at all scales—from household to national—but coordinating these nested responses to achieve a vertically cohesive course of action is challenging. Moreover, though governments have the legal authority and legitimacy to mandate or facilitate natural hazard risk reduction, non-governmental actors such as business firms, industry associations, research organizations and non-profit organizations hold much of the pertinent knowledge and resources. This interdependence demands horizontal collaboration, but coordinating risk reduction across organizational divides is fraught with challenges and requires skillful leadership. Flood risk management (FRM)—an integrated strategy to reduce the likelihood and impacts of flooding—demonstrates the governance challenge presented by natural hazards. By engaging stakeholders, coordinating public and private efforts, and employing a diversity of policy instruments, FRM can strengthen societal resilience, achieve greater efficiency, and enhance the legitimacy of decisions and actions to reduce flood risk. Implementing FRM, however, requires supportive flood risk governance arrangements that facilitate vertical and horizontal policy coordination by establishing strategic goals, negotiating roles and responsibilities, aligning policy instruments, and allocating resources.

Article

The rapid increase in losses from flooding underlines the importance of risk reduction efforts to prevent or at least mitigate the damaging impacts that floods can bring to communities, businesses, and countries. This article provides an overview of how the science of disaster risk management has improved understanding of pre-event risk reduction [or disaster risk reduction (DRR)]. Implementation, however, is still lagging, particularly when compared to expenditure for recovery and repair after a flood event. In response, flood insurance is increasingly being suggested as a potential lever for risk reduction, despite concerns about moral hazard. The article considers the literature that has emerged on this topic and discusses if the conceptual efforts of linking flood insurance and risk reduction have led to practical action. Overall, there is limited evidence of flood insurance effectively promoting risk reduction. To the extent there is, it suggests that more complex behavioral aspects are also at play. Further evidence is required to support this potential role, particularly around data and risk assessment, and the viability of different risk reduction measures.

Article

Communities facing urban flood risk have access to powerful flood simulation software for use in disaster-risk-reduction (DRR) initiatives. However, recent research has shown that flood risk continues to escalate globally, despite an increase in the primary outcome of flood simulation: increased knowledge. Thus, a key issue with the utilization of urban flood models is not necessarily development of new knowledge about flooding, but rather the achievement of more socially robust and context-sensitive knowledge production capable of converting knowledge into action. There are early indications that this can be accomplished when an urban flood model is used as a tool to bring together local lay and scientific expertise around local priorities and perceptions, and to advance improved, target-oriented methods of flood risk communication. The success of urban flood models as a facilitating agent for knowledge coproduction will depend on whether they are trusted by both the scientific and local expert, and to this end, whether the model constitutes an accurate approximation of flood dynamics is a key issue. This is not a sufficient condition for knowledge coproduction, but it is a necessary one. For example, trust can easily be eroded at the local level by disagreements among scientists about what constitutes an accurate approximation. Motivated by the need for confidence in urban flood models, and the wide variety of models available to users, this article reviews progress in urban flood model development over three eras: (1) the era of theory, when the foundation of urban flood models was established using fluid mechanics principles and considerable attention focused on development of computational methods for solving the one- and two-dimensional equations governing flood flows; (2) the era of data, which took form in the 2000s, and has motivated a reexamination of urban flood model design in response to the transformation from a data-poor to a data-rich modeling environment; and (3) the era of disaster risk reduction, whereby modeling tools are put in the hands of communities facing flood risk and are used to codevelop flood risk knowledge and transform knowledge to action. The article aims to inform decision makers and policy makers regarding the match between model selection and decision points, to orient the engineering community to the varied decision-making and policy needs that arise in the context of DRR activities, to highlight the opportunities and pitfalls associated with alternative urban flood modeling techniques, and to frame areas for future research.

Article

Giuliano Di Baldassarre

Fatalities and economic losses caused by floods are dramatically increasing in many regions of the world, and there is serious concern about future flood risk given the potentially negative effects of climatic and socio-economic changes. Over the past decades, numerous socio-economic studies have explored human responses to floods—demographic, policy and institutional changes following the occurrence of extreme events. Meanwhile, many hydrological studies have investigated human influences on floods, such as changes in frequency, magnitude, and spatial distribution of floods caused by urbanization or by implementation of risk reduction measures. Research in socio-hydrology is providing initial insights into the complex dynamics of risk resulting from the interplay (both responses and influences) between floods and people. Empirical research in this field has recently shown that traditional methods for flood risk assessment cannot capture the complex dynamics of risk emerging from mutual interactions and continuous feedback mechanisms between hydrological and social processes. It has also been shown that, while risk reduction strategies built on these traditional methods often work in the short term, they might lead to unintended consequences in the longer term. Besides empirical studies, a number of socio-hydrological models have been recently proposed to conceptualize human/flood interactions, to explain the dynamics emerging from this interplay, and to explore possible future trajectories of flood risk. Understanding the interplay between floods and societies can improve our ability to interpret flood risk changes over time and contribute to developing better policies and measures that will reduce the negative impacts of floods while maintaining the benefits of hydrological variability.

Article

In architecture, mitigation reduces the magnitude of climate change by reducing demand for resources; anticipatory adaptation improves performance against hazards; and planned adaptation creates policies and codes to support adaptation. Adaptation prepares for a future with intensifying climate conditions. The built environment must prepare for challenges that may be encountered during the service life of the building, and reduce human exposure to hazards. Structures are responsible for about 39% of the primary energy consumption worldwide and 24% of the greenhouse gas emissions, significantly contributing to the causes of climate change. Measures to reduce demand in the initial construction and over the life cycle of the building operation directly impact the climate. Improving performance against hazards requires a suite of modifications to counter specific threats. Adaptation measures may address higher temperatures, extreme precipitation, stormwater flooding, sea-level rise, hurricanes, drought, soil subsidence, wildfires, extended pest ranges, and multiple hazards. Because resources to meet every threat are inadequate, actions with low costs now which offer high benefits under a range of predicted future climates become high-priority solutions. Disaster risk is also reduced by aligning policies for planning and construction with anticipated hazards. Climate adaptation policies based on the local effects of climate change are a new tool to communicate risk and share resources. Building codes establish minimum standards for construction, so incorporating adaptation strategies into codes ensures that the resulting structures will survive a range of uncertain futures.

Article

Natural hazard governance in countries in the Global South is shifting from a state-centered approach, which has predominantly focused on disaster risk management, with limited involvement of citizens, and a disaster response to a hazard event, to an approach which is more participatory, inclusive and proactive. This emerging approach aims to be transformative, as it draws on the knowledge and skills of multiple actors, including community members; focuses on risk reduction and adaptation; and builds new models of participatory risk governance at the local and city scale. Progressive legislation has played a major role in supporting this evolution toward a more transformative approach to natural hazard governance, which recognizes the political economy and political ecology of risk. This includes acknowledging the vulnerability of communities in particular contexts, and the need to address development deficits to build resilience in the face of natural hazards. However, a significant gap exists between progressive legislation and policy, and implementation. Informal settlements experience some of the worst impacts of natural hazards due to their exposure, vulnerability, and social and political marginalization. However, they are also resilient and adaptive, developing innovative approaches in partnership with the state and other actors, to plan for and respond to natural hazards. Empirical research on particular case studies where these shifts in governance are evident, is necessary to explore the opportunities for and barriers to transformative, participatory natural hazard governance in cities in the South.

Article

Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems. That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.

Article

Svetlana Badina and Boris Porfiriev

A major implication of the dissolution of the Soviet Union in 1991 involved the radical transformation of the national security system. Its fundamentally militaristic paradigm focused on civil defense to prepare and protect communities against the strikes of conventional and nuclear warheads. It called for a more comprehensive and balanced civil protection policy oriented primarily to the communities’ and facilities’ preparedness and response to natural hazards impact and disasters. This change in policy was further catalyzed by the catastrophic results of the major disasters in the late 1980s, such as the Chernobyl nuclear power plant explosion of 1986 and the Armenian earthquake of 1988. As a result, in 1989, a specialized body was organized, the State Emergency Commission at the USSR Council of Ministers. A year later in the Russian Federation (at that time a part of the Soviet Union), an analogous commission was established. In 1991, it was reorganized into the State Committee for Civil Defense, Emergency Management, and Natural Disasters Response at the request of the president of the Russian Federation (EMERCOM). In 1994, this was replaced by the much more powerful Ministry of the Russian Federation for Civil Defense, Emergency Management, and Natural Disasters Response (which kept the abbreviation EMERCOM). In the early 21st century, this ministry is the key government body responsible for (a) development and implementation of the policy for civil defense and the regions’ protection from natural and technological hazards and disasters, and (b) leading and coordinating activities of the federal executive bodies in disaster policy areas within the Russian Federation’s Integrated State System for Emergency Prevention and Response (EPARIS). In addition, as well as in the former Soviet Union, the scientific and research organizations’ efforts to collect relevant data, monitor events, and conduct field and in-house studies to reduce the risk of disasters is crucially important. The nature of EPARIS is mainly a function of the geographic characteristics of the Russian Federation. These include the world’s largest national territory, which is vastly extended both longitudinally and latitudinally, a relatively populous Arctic region, large mountain systems, and other characteristics that create high diversity in the natural environment and combinations of natural hazards. Meanwhile, along with the natural conditions of significant size and a multiethnic composition of the population, distinctive features of a historical development path and institutional factors also contribute to diversity of settlement patterns, a high degree of economic development, and a level and quality of human life both within and between the regions of Russia. For instance, even within one of the region’s urbanized areas with a high-quality urban environment and developed socioeconomic institutions, neighboring communities exist with a traditional lifestyle and economic relations, primitive technological tools, and so on (e.g., indigenous small ethnic groups of the Russian North, Siberia, and the Far East). The massive spatial disparity of Russia creates different conditions for exposure and vulnerability of the regions to natural hazards’ impacts on communities and facilities, which has to be considered while preparing, responding to, and recovering from disasters. For this reason, EMERCOM’s organizational structure includes a central (federal) headquarters as well as Central, Northwestern, Siberian, Southern, and Moscow regional territorial branches and control centers for emergency management in all of the 85 administrative entities (subjects) of the Russian Federation. Specific features of both the EMERCOM territorial units and ministries and EPARIS as a whole coping with disasters are considered using the 2013 catastrophic flood in the Amur River basin in the Far East of Russia as a case study.