1-4 of 4 Results

  • Keywords: impacts x
Clear all

Article

Infrastructure systems—sometimes referred to as critical infrastructure or lifelines—provide services such as energy, water, sanitation, transportation, and communications that are essential for social and economic activities. Moreover, these systems typically serve large populations and comprise geographically extensive networks. They are also highly interdependent, so outages in one system such as electric power or telecommunications often affect other systems. As a consequence, when infrastructure systems are damaged in disasters, the ensuing losses are often substantial and disproportionately large. Collapse of a single major bridge, for example, can disrupt traffic flows over a broad region and impede emergency response, evacuation, commuting, freight movement, and economic recovery. Power outages in storms and other hazard events can affect millions of people, shut down businesses, and even cause fatalities. Infrastructure outages typically last from hours to weeks but can extend for months or even years. Minimizing disruptions to infrastructure services is thus key to enhancing communities’ disaster resilience. Research on infrastructure systems in natural hazards has been growing, especially as major disasters provide new data, insights, and urgency to the problem. Engineering advances have been made in understanding how hazard stresses may damage the physical components of infrastructure systems such as pipes and bridges, as well as how these elements can be designed to better withstand hazards. Modeling studies have assessed how physical damage disrupts the provision of services—for example, by indicating which neighborhoods in an urban area may be without potable water—and how disruption can be reduced through engineering and planning. The topic of infrastructure interdependencies has commanded substantial research interest. Alongside these developments, social science and interdisciplinary research has also been growing on the important topic of how infrastructure disruption in disasters has affected populations and economies. Insights into these impacts derive from a variety of information sources, including surveys, field observations, analysis of secondary data, and computational models. Such research has established the criticality of electric power and water services, for example, and the heightened vulnerability of certain population groups to infrastructure disruption. Omitting the socioeconomic impacts of infrastructure disruptions can lead to underinvestment in disaster mitigation. While the importance of understanding and reducing infrastructure disruption impacts is well-established, many important research gaps remain.

Article

Tim Davies

Rock avalanches are very large (greater than about 1 million m3) landslides from rock slopes, which can travel much farther than smaller events; the larger the avalanche, the greater the travel distance. Rock avalanches first became recognized in Switzerland in the 19th century, when the Elm and Goldau events killed many people a surprisingly long way from the origin of the landslide; these events first posed the “long-runout rock-avalanche” problem. In essence, the several-kilometer-long runout of these events appears to require low friction beneath and within the moving rock mass in order to explain their extremely long deposits, but in spite of intense research in recent decades this phenomenon still lacks a generally accepted explanation. Large collapses of volcano edifices can also generate rock avalanches that travel very long distances, albeit with a different runout–volume relationship to that of non-volcanic events. Even more intriguing is the presence of long-runout deposits not just on land but also beneath the sea and on the surfaces of Mars and the Moon. Numerous studies of rock avalanches have revealed a number of consistencies in deposit and behavioral characteristics: for example, that little or no mixing of material occurs within the moving debris mass during runout; that the deposit material beneath a meter-scale surface layer is pervasively and intensely fragmented, with fragments down to submicrometer size; that many of these fragments are agglomerates of even finer particles; that throughout the travel of a rock avalanche large volumes of fine dust are produced; that rock avalanche surfaces are typically covered by hummocks of a range of sizes; and that, as noted above, runout distance increases with volume. Since rock avalanches can travel tens of kilometers from their source, they pose severe, if low-probability, direct hazards to societal assets in mountain valleys; in addition, they can trigger extensive and long-duration geomorphic hazard cascades. Although large rock avalanches are rare (e.g., in a 10,000 km2 area of the Southern Alps in New Zealand, research showed that events larger than 5 × 107 m3 occurred about once every century), studies to date show that the proportion of total landslide volume involved in such large events is greater than the proportion in smaller, more frequent events, so that a large proportion of the total sediment generated in mountains by uplift and denudation originates in large rock avalanches. Consequently, large rock avalanches exert a significant influence on mountain geomorphology, for example by blocking rivers and forming landslide dams; these either fail, causing large dam-break floods and long-duration aggradation episodes to propagate down river systems, or remain intact to infill with sediment and form large valley flats. Rock avalanches that fall onto glaciers often result in large terminal moraines being formed as debris accumulates at the glacier terminus, and these moraines may have no relation to any climatic change. In addition, misinterpretation of rock avalanche deposits as moraines can cause underestimation of hazard risk and misinterpretation of paleoclimate. Rock avalanche runout behavior poses fundamental scientific questions, and rock avalanches have important effects on a wide range of geomorphic processes, which in turn pose threats to society. Better understanding of these impressive and intriguing events is crucial for both geoscientific progress and for reducing impacts of future disasters.

Article

In architecture, mitigation reduces the magnitude of climate change by reducing demand for resources; anticipatory adaptation improves performance against hazards; and planned adaptation creates policies and codes to support adaptation. Adaptation prepares for a future with intensifying climate conditions. The built environment must prepare for challenges that may be encountered during the service life of the building, and reduce human exposure to hazards. Structures are responsible for about 39% of the primary energy consumption worldwide and 24% of the greenhouse gas emissions, significantly contributing to the causes of climate change. Measures to reduce demand in the initial construction and over the life cycle of the building operation directly impact the climate. Improving performance against hazards requires a suite of modifications to counter specific threats. Adaptation measures may address higher temperatures, extreme precipitation, stormwater flooding, sea-level rise, hurricanes, drought, soil subsidence, wildfires, extended pest ranges, and multiple hazards. Because resources to meet every threat are inadequate, actions with low costs now which offer high benefits under a range of predicted future climates become high-priority solutions. Disaster risk is also reduced by aligning policies for planning and construction with anticipated hazards. Climate adaptation policies based on the local effects of climate change are a new tool to communicate risk and share resources. Building codes establish minimum standards for construction, so incorporating adaptation strategies into codes ensures that the resulting structures will survive a range of uncertain futures.

Article

Philip Bubeck, Antje Otto, and Juergen Weichselgartner

Floods remain the most devastating natural hazard globally, despite substantial investments in flood prevention and management in recent decades. Fluvial floods, such as the ones in Pakistan in 2010 and Thailand in 2011, can affect entire countries and cause severe economic and human losses. Also, coastal floods can inflict substantial harm owing to their destructive forces in terms of wave and tidal energy. A flood type that received growing attention in recent years is flooding from pluvial events (heavy rainfall). Even though these are locally confined, their sudden onset and unpredictability pose a danger to areas that are generally not at risk from flooding. In the future, it is projected that flood risk will increase in many regions both because of the effects of global warming on the hydrological cycle and the continuing concentration of people and economic assets in risk-prone areas. Floods have a large variety of societal impacts that span across space and time. While some of these impacts are obvious and have been well researched, others are more subtle and less is known about their complex processes and long-term effects. The most immediate and apparent impact of floods is direct damage caused by physical contact between floodwaters and economic assets, cultural heritage, or human beings, with the result for humans being injuries and deaths. Direct flood damage can amount to billions of US dollars for single events, such as the floods in the Danube and Elbe catchment in Central Europe in 2002 and 2013. More indirect economic implications are the losses that occur outside of the flood event in space and time, such as losses due to business disruption. The flood in Thailand in 2011, for instance, resulted in a lack of auto parts supplies and consequently the shutdown of car manufacturing within and outside the flood zone. Floods also have long-term indirect impacts on flood-affected people and communities. Experiencing property damage and losing important personal belongings can have a negative psychological effect on flood victims. Much less is known about this type of flood impact: how long do these impacts last? What makes some people or communities recover faster than others from financial losses and emotional stress? Moreover, flood impacts are not equally distributed across different groups of society. Often, poor, elderly, and marginalized societal groups are particularly vulnerable to the effects of flooding inasmuch as these groups generally have little social, human, and financial coping capacities. In many countries, women regularly bear a disproportionately high burden because of their societal status. Finally, severe floods often provide so-called windows of opportunities, enabling rapid policy change, resulting in new flood risk management policies. Such newly adopted policy arrangements can lead to societal conflicts over issues of interests, equity, and fairness. For instance, flood events often trigger large-scale investment in flood defense infrastructure, which are associated with high construction costs. Although these costs are usually borne by the taxpayer, often only a small proportion of society shares in their benefits. In addition, societal conflict can arise concerning where to build structural measures; what impacts these measures have on the ground regarding economic development potentials, different kinds of uses, and nature protection; and which effects are expected downstream. In such controversies, issues of participation and decision making are central and often highly contested. While floods are usually associated with negative societal impacts in industrialized countries, they also have beneficial impacts on nature and society. In many parts of the world, the livelihood of millions of people depends on the recurring occurrence of flooding. For instance, farming communities in or near floodplains rely upon regular floodwaters that carry nutrients and sediments, enriching the soil and making it fertile for cultivation.