1-14 of 14 Results

  • Keywords: response x
Clear all

Article

Natural disasters cause massive social disruptions and can lead to tremendous economic and human losses. Given their uncertain and destructive nature, disasters invariably induce significant governmental responses and typically pose severe financial challenges for jurisdictions across all levels of government. From a public finance perspective, disasters cause governments to incur additional spending on various emergency management activities, and by disrupting normal business activities they also affect tax base robustness and cause revenue losses. The question is: How significant are these fiscal effects and how do they affect hazards governance more generally? Understanding the fiscal implications of natural disasters is essential to evaluating the size of the economic costs of disasters as well as forecasting governments’ financial exposure to future shocks. Furthermore, how disaster costs are shared among different levels of government is another important question concerning the intergovernmental dynamics of disaster management. In the U.S. federal system, the direct fiscal costs of natural disasters (i.e., increased government expenditures due to disaster shocks) are largely borne by the federal government. It is estimated that Hurricane Katrina cost the federal government approximately $120 billion while Hurricane Sandy cost $60 billion. Even in the years without large-scale disaster events, federal disaster spending is between $2 billion and $6 billion annually. Under the Stafford Act, the federal government plays a critical role in funding disaster-related programs (e.g., direct relief, mitigation grants, and subsidized insurance programs) and redistributing the actual costs of natural hazards, meaning that a considerable portion of the local disaster burden is shifted to all U.S. taxpayers. This raises a set of issues concerning the equity and efficiency of the U.S. disaster policy framework. Managing disasters involves multiphased activities to mitigate, prepare for, respond to, and recover from disaster shocks. There is a common belief that the federal government inappropriately spends far more on ex post disaster response, relief, and recovery than what it spends on ex ante mitigation and preparedness, often driven by political motivations (e.g., meeting voters’ preferences for postdisaster aid) and the current budget rules. As pointed out by many others, federal disaster relief and assistance distort the subnational incentive to invest in local disaster prevention and mitigation efforts. Furthermore, given the mounting evidence on the cost-effectiveness of disaster mitigation programs in reducing future disaster damages, the current practice of focusing resources on postdisaster assistance means substantial public welfare losses. In recent years there has been a call for the federal government to shift its disaster policy emphasis toward mitigation and preparedness and also to facilitate local efforts on mitigation. To achieve the goal requires a comprehensive reform in government budgeting for emergency management.

Article

Humankind has always lived with natural hazards and their consequences. While the frequency and intensity of geological processes may have remained relatively stable, population growth and infrastructure development in areas susceptible to experiencing natural hazards has increased societal risk and the losses experienced from hazard activity. Furthermore, increases in weather-related (e.g., hurricanes, wildfires) hazards emanating from climate change will increase risk in some countries and result in others having to deal with natural hazard risk for the first time. Faced with growing and enduring risk, disaster risk reduction (DRR) strategies will play increasingly important roles in facilitating societal sustainability. This article discusses how readiness or preparedness makes an important contribution to comprehensive DRR. Readiness is defined here in terms of those factors that facilitate people’s individual and collective capability to anticipate, cope with, adapt to, and recover from hazard consequences. This article first discusses the need to conceptualize readiness as comprising several functional categories (structural, survival/direct action, psychological, community/capacity building, livelihood and community-agency readiness). Next, the article discusses how the nature and extent of people’s readiness is a function of the interaction between the information available and the personal, family, community and societal factors used to interpret information and support readiness decision-making. The health belief model (HBM), protection motivation theory (PMT), person-relative-to-event (PrE) theory, theory of planned behavior (TPB), critical awareness (CA), protective action decision model (PADM), and community engagement theory (CET) are used to introduce variables that inform people’s readiness decision-making. A need to consider readiness as a developmental process is discussed and identifies how the variables introduced in the above theories play different roles at different stages in the development of comprehensive readiness. Because many societies must learn to coexist with several sources of hazard, an “all-hazards” approach is required to facilitate the capacity of societies and their members to be resilient in the face of the various hazard consequences they may have to contend with. This article discusses research into readiness for the consequences that arise from earthquake, volcanic, flood, hurricane, and tornado hazards. Furthermore, because hazards transcend national and cultural divides, a comprehensive conceptualization of readiness must accommodate a cross-cultural perspective. Issues in the cross-cultural testing of theory is discussed, as is the need for further work into the relationship between readiness and culture-specific beliefs and processes.

Article

Emergency and disaster planning involves a coordinated, co-operative process of preparing to match urgent needs with available resources. The phases are research, writing, dissemination, testing, and updating. Hence, an emergency plan needs to be a living document that is periodically adapted to changing circumstances and that provides a guide to the protocols, procedures, and division of responsibilities in emergency response. Emergency planning is an exploratory process that provides generic procedures for managing unforeseen impacts and should use carefully constructed scenarios to anticipate the needs that will be generated by foreseeable hazards when they strike. Plans need to be developed for specific sectors, such as education, health, industry, and commerce. They also need to exist in a nested hierarchy that extends from the local emergency response (the most fundamental level), through the regional tiers of government, to the national and international levels. Failure to plan can be construed as negligence because it would involve failing to anticipate needs that cannot be responded to adequately by improvisation during an emergency. Plans are needed, not only for responding to the impacts of disaster, but also to maintain business continuity while managing the crisis, and to guide recovery and reconstruction effectively. Dealing with disaster is a social process that requires public support for planning initiatives and participation by a wide variety of responders, technical experts and citizens. It needs to be sustainable in the light of challenges posed by non-renewable resource utilization, climate change, population growth, and imbalances of wealth. Although, at its most basic level, emergency planning is little more than codified common sense, the increasing complexity of modern disasters has required substantial professionalization of the field. This is especially true in light of the increasing role in emergency response of information and communications technology. Disaster planners and coordinators are resource managers, and in the future, they will need to cope with complex and sophisticated transfers of human and material resources. In a globalizing world that is subject to accelerating physical, social, and economic change, the challenge of managing emergencies well depends on effective planning and foresight, and the ability to connect disparate elements of the emergency response into coherent strategies.

Article

Humankind is becoming increasingly dependent on timely flood warnings. Dependence is being driven by an increasing frequency and intensity of heavy rainfall events, a growing number of disruptive and damaging floods, and rising sea levels associated with climate change. At the same time, the population living in flood-risk areas and the value of urban and rural assets exposed to floods are growing rapidly. Flood warnings are an important means of adapting to growing flood risk and learning to live with it by avoiding damage, loss of life, and injury. Such warnings are increasingly being employed in combination with other flood-risk management measures, including large-scale mobile flood barriers and property-level protection measures. Given that lives may well depend on effective flood warnings and appropriate warning responses, it is crucial that the warnings perform satisfactorily, particularly by being accurate, reliable, and timely. A sufficiently long warning lead time to allow precautions to be taken and property and people to be moved out of harm’s way is particularly important. However, flood warnings are heavily dependent on the other components of flood forecasting, warning, and response systems of which they are a central part. These other components—flood detection, flood forecasting, warning communication, and warning response—form a system that is characterized as a chain, each link of which depends on the other links for effective outcomes. Inherent weaknesses exist in chainlike processes and are often the basis of warning underperformance when it occurs. A number of key issues confront those seeking to create and successfully operate flood warning systems, including (1) translating technical flood forecasts into warnings that are readily understandable by the public; (2) taking legal responsibility for warnings and their dissemination; (3) raising flood-risk awareness; (4) designing effective flood warning messages; (5) knowing how best and when to communicate warnings; and (6) addressing uncertainties surrounding flood warnings. Flood warning science brings together a large body of research findings from a particularly wide range of disciplines ranging from hydrometeorological science to social psychology. In recent decades, major advances have been made in forecasting fluvial and coastal floods. Accurately forecasting pluvial events that cause surface-water floods is at the research frontier, with significant progress being made. Over the same time period, impressive advances in a variety of rapid, personalized communication means has transformed the process of flood warning dissemination. Much is now known about the factors that constrain and aid appropriate flood warning responses both at the individual and at organized, flood emergency response levels, and a range of innovations are being applied to improve response effectiveness. Although the uniqueness of each flood and the inherent unpredictability involved in flood events means that sometimes flood warnings may not perform as expected, flood warning science is helping to minimize these occurrences.

Article

Along with sub-Saharan Africa and South Asia, Latin America and the Caribbean is among the geographic regions most exposed and vulnerable to the occurrence of disasters. The vulnerability is explained by geography and climate, but also by prevailing poverty and inequality. Year after year, multiple disasters such as landslides, hurricanes, floods, rains, droughts, storms, earthquakes, volcanic eruptions, and tsunamis, among others, threaten the region. Natural disasters reveal the deficiencies of infrastructure and essential services. In particular, they highlight the lack of an institutional framework for effective governance with clearly defined goals of how to prevent, respond to, and reconstruct after a natural catastrophe. One of the priorities of governments in the region is to achieve resilience—that is, to strengthen the capacity to resist, adapt, and recover from the effects of natural disasters. To be able to accomplish this, governments need to prepare before a natural disaster strikes. Therefore, disaster risk management is critical. A fundamental element in the strategy of increasing resilience is good planning in general—that is, to reduce inequality, manage urbanization, and invest in necessary infrastructure such as energy, sewage, and water management. Because climate change increases the risk of disasters, it is generally understood that good governance practices can prevent further global warming. Governments might achieve this, for example, by investing in renewable energy and financing other environmentally friendly initiatives. Unfortunately, most current governance models in Latin America and the Caribbean are characterized by bureaucratic structures that are fragmented into different sectors and whose actors do not have much interaction between them. With technical assistance from organizations, such as the World Bank and the United Nations, stakeholders in Latin America and the Caribbean are learning how to develop plans that encourage the collaboration of multiple sectors (e.g., transportation, housing) and improve the working relationships between various institutions (e.g. local associations, NGOs, private and public organizations). To be adequately prepared for a disaster, it is necessary to establish a network of actors that can engage quickly in decision-making and coordinate effectively between local, regional, and national levels.

Article

Anshu Sharma and Sunny Kumar

India faces a very broad range of hazards due to its wide geoclimatic spread. This, combined with deep-rooted social, economic, physical, and institutional vulnerabilities, makes India one of the highest disaster-affected countries in the world. Natural hazards have gained higher visibility due to an increasing frequency and magnitude of their impact in recent decades, and efforts to manage disasters have been largely unable to keep pace with the growing incidences, scale, and complexities of disaster events. A number of mega events between 1990 and 2005, including earthquakes, cyclones, floods, and a tsunami, created momentum in decision making to look at disasters critically and to push for a shift from response to mitigation and preparedness. While efforts were put in place for appropriate legislation, institution building, and planning, these processes were long drawn out and time and resource intensive. It has taken years for the governance systems to begin showing results on the ground. While these efforts were being formulated, the changing face of disasters began to present new challenges. Between 2005 and 2015, a number of unprecedented events shook the system, underscoring the increasing variability and thus unpredictability of natural hazards as a new normal. Events in this period included cloudbursts and flash floods in the deserts, droughts in areas that are normally flood prone, abnormal hail and storm events, and floods of rare fury. To augment the shifting natural hazard landscape, urbanization and changing lifestyles have made facing disasters more challenging. For example, having entire cities run out of water is a situation that response systems are not geared to address. The future will be nothing like the past, with climate change adding to natural hazard complexities. Yet, the tools to manage hazards and reduce vulnerabilities are also evolving to unprecedented levels of sophistication. Science, people, and innovations will be valuable instruments for addressing the challenges of natural hazards in the times ahead.

Article

Ricardo Marten, Theresa Abrassart, and Camillo Boano

The establishment of effective linkages between institutional urban planning and disaster risk strategies remains a challenge for formal governance structures. For governments at all administrative scales, disaster resilience planning has required systemic capacities that rely on structures of governance, humanitarian frameworks, and budgetary capacities. However, with growing urbanization trends, humanitarian responses and Disaster Risk Management (DRM) frameworks have had to adapt their operations in contexts with high population density, complex infrastructure systems, informal dynamics, and a broader range of actors. Urban areas concentrate an array of different groups with the capability of contributing to urban responses and strategies to cope with disaster effects, including community groups, government agencies, international organizations and humanitarian practitioners. In addition, cities have running planning structures that support their administration and spatial organization, with instruments that supply constant information about population characteristics, infrastructure capacity and potential weaknesses. Processes and data ascribed to urban planning can provide vital knowledge to natural hazard governance frameworks, from technical resources to conceptual approaches towards spatial analysis. Authorities managing risk could improve their strategic objectives if they could access and integrate urban planning information. Furthermore, a collaborative hazard governance can provide equity to multiple urban actors that are usually left out of institutional DRM, including nongovernmental organizations, academia, and community groups. Traditional top-down models can operate in parallel with horizontal arrangements, giving voice to groups with limited access to political platforms but who are knowledgeable on urban space and social codes. Their still limited recognition is evidence that there is still a disconnect between the intentions of global frameworks for inclusive governance, and the co-production of an urban planning designed for inclusive resilience.

Article

With current rapid growth of cities and the move toward the development of both sustainable and resilient infrastructure systems, it is vital for the structural engineering community to continue to improve their knowledge in earthquake engineering to limit infrastructure damage and the associated social and economic impacts. Historically, the development of such knowledge has been accomplished through the deployment of analytical simulations and experimental testing. Experimental testing is considered the most accurate tool by which local behavior of components or global response of systems can be assessed, assuming the test setup is realistically configured and the experiment is effectively executed. However, issues of scale, equipment capacity, and availability of research funding continue to hinder full-scale testing of complete structures. On the other hand, analytical simulation software is limited to solving specific type of problems and in many cases fail to capture complex behaviors, failure modes, and collapse of structural systems. Hybrid simulation has emerged as a potentially accurate and efficient tool for the evaluation of the response of large and complex structures under earthquake loading. In hybrid (experiment-analysis) simulation, part of a structural system is experimentally represented while the rest of the structure is numerically modeled. Typically, the most critical component is physically represented. By combining a physical specimen and a numerical model, the system-level behavior can be better quantified than modeling the entire system purely analytically or testing only a component. This article discusses the use of hybrid simulation as an effective tool for the seismic evaluation of structures. First, a chronicled development of hybrid simulation is presented with an overview of some of the previously conducted studies. Second, an overview of a hybrid simulation environment is provided. Finally, a hybrid simulation application example on the response of steel frames with semi-rigid connections under earthquake excitations is presented. The simulations included a full-scale physical specimen for the experimental module of a connection, and a 2D finite element model for the analytical module. It is demonstrated that hybrid simulation is a powerful tool for advanced assessment when used with appropriate analytical and experimental realizations of the components and that semi-rigid frames are a viable option in earthquake engineering applications.

Article

Warren S. Eller and Michael S. Pennington

Assessment is a necessary and critical component in process improvement. Moreover, there is a strong public expectation that because governance is a public good, it will incorporate demonstrable equitable and efficient processes. As a central tenet of New Public Management (NPM), a widely accepted approach to increase efficiency of public sector performance through the introduction of “business” practices, performance assessment has helped improve governance in general. However, employing assessment practices has been problematic at best in the realm of hazards preparedness and response. Notably, the fragmented nature of governance in the disaster response network, which spans both levels of government and public and private sectors, is not conducive to holistic evaluation. Similarly, the lack of clear goals, available funding, and trained evaluation personnel severely inhibit the ability to comprehensively assess performance in the management of natural hazards. Effective assessment in this area, that is evaluation that will significantly enhance hazard and vulnerability management in terms of mitigation, preparedness, and response, requires several distinct steps for effective implementation. This includes first understanding the dimensions of the natural hazards governance community and the assessment process. These are: (1) identifying the purpose of the review (formative—evaluation intending to improve processes or summative—evaluation intended for final examination of processes), (2) Identifying clear and concise goals for the program and ensuring these goals are consistent with federal, state, and local policy, and (3) identifying the underlying fragmentation between sectors, levels of governance, and disaster phase in the governance system. Based on these dimensions, the most effective assessments will be those that are incorporated within or developed from the actual governance system.

Article

Public sector agencies at all levels of government work to mitigate risk, prepare for and respond to emergencies and disasters, and recover from catastrophic events. This action is guided by a national emergency management system that has evolved over time and was most recently reformed post-Hurricane Katrina. There is an extensive set of federal guidelines by the Department of Homeland Security and the Federal Emergency Management Agency that serve to structure the national system of hazard management. These include: the National Preparedness Goal; the National Preparedness System; National Planning Frameworks and accompanying Federal Interagency Operational Plans (FIOPs); the National Preparedness Report; and the Campaign to Build and Sustain Preparedness. Despite the considerable institutional and administrative guidance, there remain critical gaps in public-agency natural hazard management. These include lack of quality planning on the subnational level, insufficient local fiscal and human capital, and inconsistent regulation of the recovery process. While stricter implementation of federal mandates may partly address some of these issues, others will require greater political will in order to enact zoning regulations, create a shift in the acceptance of risk, and ensure that solutions are afforded by partnerships between civil, economic, and public entities.

Article

Natural hazard services include a wide range of activities, many of which are allied with public safety, but can also be taken to include natural resource management, land-use planning, and other related activities. These activities are considered to be part of emergency management, and have come to be seen as a public sector responsibility even though they are often carried out by contractors. They take place across all of the phases of the emergency management cycle: response, recovery, mitigation, and preparedness. The prevalence of private sector utilization is such that many services, such as hazard mitigation planning, grants administration, and various components of recovery, can be argued to be largely privatized due to the extent of market penetration and control from the private sector, including in the creation of policy and its implementation. However, there are unique challenges that arise when private-sector provision of services, and not just products, is utilized. Partnerships and other collaborative models are utilized frequently, including not just private sector firms, but also non-profit organizations, academic institutions, community organizations, and other groups to help overcome these challenges.

Article

Svetlana Badina and Boris Porfiriev

A major implication of the dissolution of the Soviet Union in 1991 involved the radical transformation of the national security system. Its fundamentally militaristic paradigm focused on civil defense to prepare and protect communities against the strikes of conventional and nuclear warheads. It called for a more comprehensive and balanced civil protection policy oriented primarily to the communities’ and facilities’ preparedness and response to natural hazards impact and disasters. This change in policy was further catalyzed by the catastrophic results of the major disasters in the late 1980s, such as the Chernobyl nuclear power plant explosion of 1986 and the Armenian earthquake of 1988. As a result, in 1989, a specialized body was organized, the State Emergency Commission at the USSR Council of Ministers. A year later in the Russian Federation (at that time a part of the Soviet Union), an analogous commission was established. In 1991, it was reorganized into the State Committee for Civil Defense, Emergency Management, and Natural Disasters Response at the request of the president of the Russian Federation (EMERCOM). In 1994, this was replaced by the much more powerful Ministry of the Russian Federation for Civil Defense, Emergency Management, and Natural Disasters Response (which kept the abbreviation EMERCOM). In the early 21st century, this ministry is the key government body responsible for (a) development and implementation of the policy for civil defense and the regions’ protection from natural and technological hazards and disasters, and (b) leading and coordinating activities of the federal executive bodies in disaster policy areas within the Russian Federation’s Integrated State System for Emergency Prevention and Response (EPARIS). In addition, as well as in the former Soviet Union, the scientific and research organizations’ efforts to collect relevant data, monitor events, and conduct field and in-house studies to reduce the risk of disasters is crucially important. The nature of EPARIS is mainly a function of the geographic characteristics of the Russian Federation. These include the world’s largest national territory, which is vastly extended both longitudinally and latitudinally, a relatively populous Arctic region, large mountain systems, and other characteristics that create high diversity in the natural environment and combinations of natural hazards. Meanwhile, along with the natural conditions of significant size and a multiethnic composition of the population, distinctive features of a historical development path and institutional factors also contribute to diversity of settlement patterns, a high degree of economic development, and a level and quality of human life both within and between the regions of Russia. For instance, even within one of the region’s urbanized areas with a high-quality urban environment and developed socioeconomic institutions, neighboring communities exist with a traditional lifestyle and economic relations, primitive technological tools, and so on (e.g., indigenous small ethnic groups of the Russian North, Siberia, and the Far East). The massive spatial disparity of Russia creates different conditions for exposure and vulnerability of the regions to natural hazards’ impacts on communities and facilities, which has to be considered while preparing, responding to, and recovering from disasters. For this reason, EMERCOM’s organizational structure includes a central (federal) headquarters as well as Central, Northwestern, Siberian, Southern, and Moscow regional territorial branches and control centers for emergency management in all of the 85 administrative entities (subjects) of the Russian Federation. Specific features of both the EMERCOM territorial units and ministries and EPARIS as a whole coping with disasters are considered using the 2013 catastrophic flood in the Amur River basin in the Far East of Russia as a case study.

Article

Non-profit organizations make significant contributions to society in a number of ways. In addition to providing services to underrepresented, marginalized, and vulnerable populations in our communities, they also play important advocacy, expressive and leadership development, community building and democratization, and innovation-oriented roles. The sector is thus regarded as “critical civic infrastructure,” civic capacity, or a social safety net. As such, through collaborative engagement in disaster or emergency management, non-profits can be even more instrumental in helping communities become disaster resilient. Disaster management can be understood as a four-stage cycle that includes mitigation, preparedness, response, and recovery functions. Past disasters demonstrate that non-profits engage with this cycle in diverse ways. A few types of non-profit organizations explicitly include, as part of their mission, one or more of these stages of disaster management. These include traditional disaster relief organizations, organizations dedicated to preparedness, or those responsible for supporting risk reduction or mitigation efforts. Another set of organizations is typified by non-profits that shift their mission during times of disaster to fill unmet needs. These non-profits shift existing resources or skills from their pre-disaster use to new disaster relief functions. The other type of non-profit to respond or support disaster management is the emergent organization. These emergent non-profits or associations are formed during an event to respond to specific needs. They can endure past the disaster recovery period and become new permanent organizations. It is important to remember that non-profits and more broadly, civil society—represent a unique sphere of voluntary human organization and activity separate from the family, the state, and the market. In some cases, these organizations are embedded in communities, a position that grants them local presence, knowledge, and trust. As such, they are well positioned to play important advocacy roles that can elevate the needs of underrepresented communities, as well as instigate disaster management policies that can serve to protect these communities. Furthermore, their voluntary nature—and the public benefit they confer—also position them to attract much-needed resources from various individuals and entities in order to augment or supplement governments’ often limited capacity. In all, civil society in general, is a sphere well positioned to execute the full spectrum of emergency management functions alongside traditional state responses.

Article

The level of interest in public–private partnerships (P3s) is growing—along with supporting literature—and applications are expanding to include new areas where industry supplements public investments in return for measurable rewards. In what follows are timely observations to support P3 operating principles for natural hazards governance—working as an integrated team, sharing innovations, solving technical and operational problems, and engaging in voluntary associations to creatively solve problems. P3s involve voluntary collaboration to achieve common goals and financial benefit. In a globalized economy with highly interconnected systems, this spirit of innovation, sense of personal responsibility, and vision for collective partnerships can be seen throughout the world in the application of P3s. The impact and efficacy of P3s is not just realized in the pursuit of economic, security, safety, social, and environmental goals, but also in establishing integrated governance policies to contend with the persistent vulnerabilities of natural hazards. The emerging world of P3s and natural hazards governance can be illustrated by three real-world examples: (1) a catastrophic regional natural disaster; (2) an urban research-study focused on the measurement of critical infrastructure resilience; and (3) a summary of transportation systems in the unique environment of maritime ports. From these case studies, and a diverse selection of references, it highlights key findings that will benefit future research, critical analysis, and policy application, including academic value, integrated participation, evidence-based metrics, smart resilience, and future innovation.