1-18 of 18 Results  for:

  • Risk Management x
Clear all

Article

Agenda setting describes the process through which issues are selected for consideration by a decision-making body. Among the myriad of issues policymakers can consider, few are more vexing than natural hazards. By aggregating (or threatening to aggregate) death, destruction, and economic loss, natural hazards represent a serious and persistent threat to public safety. While citizens rightfully expect policymakers to protect them, many of the policy challenges associated natural hazards fail to reach the crowded government agenda. This article reviews the literature on agenda setting and natural hazards, including the strain between preparing for emerging hazards, on the one hand, and responding to existing disasters, on the other hand. It considers the extent to which natural hazards pose distinctive difficulties during the agenda-setting process, focusing specifically on the dynamics of issue identification, problem definition, venue shopping, and interest group mobilization in natural hazard domains. It closes by suggesting a number of future avenues of agenda-setting research.

Article

Economic resilience, in its static form, refers to utilizing remaining resources efficiently to maintain functionality of a household, business, industry, or entire economy after a disaster strikes, and, in its dynamic form, to effectively investing in repair and reconstruction to promote accelerated recovery. As such, economic resilience is oriented to implementing various post-disaster actions (tactics) to reduce business interruption (BI), in contrast to pre-disaster actions such as mitigation that are primarily oriented to preventing property damage. A number of static resilience tactics have been shown to be effective (e.g., conserving scarce inputs, finding substitutes from within and from outside the region, using inventories, and relocating activity to branch plants/offices or other sites). Efforts to measure the effectiveness of the various tactics are relatively new and aim to translate these estimates into dollar benefits, which can be juxtaposed to estimates of dollar costs of implementing the tactics. A comprehensive benefit-cost analysis can assist public- and private sector decision makers in determining the best set of resilience tactics to form an overall resilience strategy.

Article

European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps. Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.

Article

Thomas Thaler, David Shively, Jacob Petersen-Perlman, Lenka Slavikova, and Thomas Hartmann

The frequency and severity of extreme weather events are expected to increase due to climate change. These developments and challenges have focused the attention of policymakers on the question of how to manage natural hazards. The main political discourse revolves around the questions of how we can make our society more resilient for possible future events. A central challenge reflects collective choices, which affect natural hazards governance, risk, and individual and societal vulnerability. In particular, transboundary river basins present difficult and challenging decisions at local, regional, national, and international levels as they involve and engage large numbers of stakeholders. Each of these groups has different perspectives and interests in how to design and organize flood risk management, which often hinder transnational collaborations in terms of upstream–downstream or different riverbed cooperation. Numerous efforts to resolve these conflicts have historically been tried across the world, particularly in relation to institutional cooperation. Consequently, greater engagement of different countries in management of natural hazards risks could decrease international conflicts and increase capacity at regional and local levels to adapt to future hazard events. Better understanding of the issues, perspectives, choices, and potential for conflict, and clear sharing of responsibilities, is crucial for reducing impacts of future events at the transboundary level.

Article

This article considers how corruption affects the management of disaster mitigation, relief, and recovery. Corruption is a very serious and pervasive issue that affects all countries and many operations related to disasters, yet it has not been studied to the degree that it merits. This is because it is difficult to define, hard to measure and difficult to separate from other issues, such as excessive political influence and economic mismanagement. Not all corruption is illegal, and not all of that which is against the law is vigorously pursued by law enforcement. In essence, corruption subverts public resources for private gain, to the damage of the body politic and people at large. It is often associated with political violence and authoritarianism and is a highly exploitative phenomenon. Corruption knows no boundaries of social class or economic status. It tends to be greatest where there are strong juxtapositions of extreme wealth and poverty. Corruption is intimately bound up with the armaments trade. The relationship between arms supply and humanitarian assistance and support for democracy is complex and difficult to decipher. So is the relationship between disasters and organized crime. In both cases, disasters are seen as opportunities for corruption and potentially massive gains, achieved amid the fear, suffering, and disruption of the aftermath. In humanitarian emergencies, black markets can thrive, which, although they support people by providing basic incomes, do nothing to reduce disaster risk. In counties in which the informal sector is very large, there are few, and perhaps insufficient, controls on corruption in business and economic affairs. Corruption is a major factor in weakening efforts to bring the problem of disasters under control. The solution is to reduce its impact by ensuring that transactions connected with disasters are transparent, ethically justifiable, and in line with what the affected population wants and needs. In this respect, the phenomenon is bound up with fundamental human rights. Denial or restriction of such rights can reduce a person’s access to information and freedom to act in favor of disaster reduction. Corruption can exacerbate such situations. Yet disasters often reveal the effects of corruption, for example, in the collapse of buildings that were not built to established safety codes.

Article

Emergency and disaster planning involves a coordinated, co-operative process of preparing to match urgent needs with available resources. The phases are research, writing, dissemination, testing, and updating. Hence, an emergency plan needs to be a living document that is periodically adapted to changing circumstances and that provides a guide to the protocols, procedures, and division of responsibilities in emergency response. Emergency planning is an exploratory process that provides generic procedures for managing unforeseen impacts and should use carefully constructed scenarios to anticipate the needs that will be generated by foreseeable hazards when they strike. Plans need to be developed for specific sectors, such as education, health, industry, and commerce. They also need to exist in a nested hierarchy that extends from the local emergency response (the most fundamental level), through the regional tiers of government, to the national and international levels. Failure to plan can be construed as negligence because it would involve failing to anticipate needs that cannot be responded to adequately by improvisation during an emergency. Plans are needed, not only for responding to the impacts of disaster, but also to maintain business continuity while managing the crisis, and to guide recovery and reconstruction effectively. Dealing with disaster is a social process that requires public support for planning initiatives and participation by a wide variety of responders, technical experts and citizens. It needs to be sustainable in the light of challenges posed by non-renewable resource utilization, climate change, population growth, and imbalances of wealth. Although, at its most basic level, emergency planning is little more than codified common sense, the increasing complexity of modern disasters has required substantial professionalization of the field. This is especially true in light of the increasing role in emergency response of information and communications technology. Disaster planners and coordinators are resource managers, and in the future, they will need to cope with complex and sophisticated transfers of human and material resources. In a globalizing world that is subject to accelerating physical, social, and economic change, the challenge of managing emergencies well depends on effective planning and foresight, and the ability to connect disparate elements of the emergency response into coherent strategies.

Article

Throughout history, flood management practice has evolved in response to flood events. This heuristic approach has yielded some important incremental shifts in both policy and planning (from the need to plan at a catchment scale to the recognition that flooding arises from multiple sources and that defenses, no matter how reliable, fail). Progress, however, has been painfully slow and sporadic, but a new, more strategic, approach is now emerging. A strategic approach does not, however, simply sustain an acceptable level of flood defence. Strategic Flood Risk Management (SFRM) is an approach that relies upon an adaptable portfolio of measures and policies to deliver outcomes that are socially just (when assessed against egalitarian, utilitarian, and Rawlsian principles), contribute positively to ecosystem services, and promote resilience. In doing so, SFRM offers a practical policy and planning framework to transform our understanding of risk and move toward a flood-resilient society. A strategic approach to flood management involves much more than simply reducing the chance of damage through the provision of “strong” structures and recognizes adaptive management as much more than simply “wait and see.” SFRM is inherently risk based and implemented through a continuous process of review and adaptation that seeks to actively manage future uncertainty, a characteristic that sets it apart from the linear flood defense planning paradigm based upon a more certain view of the future. In doing so, SFRM accepts there is no silver bullet to flood issues and that people and economies cannot always be protected from flooding. It accepts flooding as an important ecosystem function and that a legitimate ecosystem service is its contribution to flood risk management. Perhaps most importantly, however, SFRM enables the inherent conflicts as well as opportunities that characterize flood management choices to be openly debated, priorities to be set, and difficult investment choices to be made.

Article

Natural disasters cause massive social disruptions and can lead to tremendous economic and human losses. Given their uncertain and destructive nature, disasters invariably induce significant governmental responses and typically pose severe financial challenges for jurisdictions across all levels of government. From a public finance perspective, disasters cause governments to incur additional spending on various emergency management activities, and by disrupting normal business activities they also affect tax base robustness and cause revenue losses. The question is: How significant are these fiscal effects and how do they affect hazards governance more generally? Understanding the fiscal implications of natural disasters is essential to evaluating the size of the economic costs of disasters as well as forecasting governments’ financial exposure to future shocks. Furthermore, how disaster costs are shared among different levels of government is another important question concerning the intergovernmental dynamics of disaster management. In the U.S. federal system, the direct fiscal costs of natural disasters (i.e., increased government expenditures due to disaster shocks) are largely borne by the federal government. It is estimated that Hurricane Katrina cost the federal government approximately $120 billion while Hurricane Sandy cost $60 billion. Even in the years without large-scale disaster events, federal disaster spending is between $2 billion and $6 billion annually. Under the Stafford Act, the federal government plays a critical role in funding disaster-related programs (e.g., direct relief, mitigation grants, and subsidized insurance programs) and redistributing the actual costs of natural hazards, meaning that a considerable portion of the local disaster burden is shifted to all U.S. taxpayers. This raises a set of issues concerning the equity and efficiency of the U.S. disaster policy framework. Managing disasters involves multiphased activities to mitigate, prepare for, respond to, and recover from disaster shocks. There is a common belief that the federal government inappropriately spends far more on ex post disaster response, relief, and recovery than what it spends on ex ante mitigation and preparedness, often driven by political motivations (e.g., meeting voters’ preferences for postdisaster aid) and the current budget rules. As pointed out by many others, federal disaster relief and assistance distort the subnational incentive to invest in local disaster prevention and mitigation efforts. Furthermore, given the mounting evidence on the cost-effectiveness of disaster mitigation programs in reducing future disaster damages, the current practice of focusing resources on postdisaster assistance means substantial public welfare losses. In recent years there has been a call for the federal government to shift its disaster policy emphasis toward mitigation and preparedness and also to facilitate local efforts on mitigation. To achieve the goal requires a comprehensive reform in government budgeting for emergency management.

Article

Humankind is becoming increasingly dependent on timely flood warnings. Dependence is being driven by an increasing frequency and intensity of heavy rainfall events, a growing number of disruptive and damaging floods, and rising sea levels associated with climate change. At the same time, the population living in flood-risk areas and the value of urban and rural assets exposed to floods are growing rapidly. Flood warnings are an important means of adapting to growing flood risk and learning to live with it by avoiding damage, loss of life, and injury. Such warnings are increasingly being employed in combination with other flood-risk management measures, including large-scale mobile flood barriers and property-level protection measures. Given that lives may well depend on effective flood warnings and appropriate warning responses, it is crucial that the warnings perform satisfactorily, particularly by being accurate, reliable, and timely. A sufficiently long warning lead time to allow precautions to be taken and property and people to be moved out of harm’s way is particularly important. However, flood warnings are heavily dependent on the other components of flood forecasting, warning, and response systems of which they are a central part. These other components—flood detection, flood forecasting, warning communication, and warning response—form a system that is characterized as a chain, each link of which depends on the other links for effective outcomes. Inherent weaknesses exist in chainlike processes and are often the basis of warning underperformance when it occurs. A number of key issues confront those seeking to create and successfully operate flood warning systems, including (1) translating technical flood forecasts into warnings that are readily understandable by the public; (2) taking legal responsibility for warnings and their dissemination; (3) raising flood-risk awareness; (4) designing effective flood warning messages; (5) knowing how best and when to communicate warnings; and (6) addressing uncertainties surrounding flood warnings. Flood warning science brings together a large body of research findings from a particularly wide range of disciplines ranging from hydrometeorological science to social psychology. In recent decades, major advances have been made in forecasting fluvial and coastal floods. Accurately forecasting pluvial events that cause surface-water floods is at the research frontier, with significant progress being made. Over the same time period, impressive advances in a variety of rapid, personalized communication means has transformed the process of flood warning dissemination. Much is now known about the factors that constrain and aid appropriate flood warning responses both at the individual and at organized, flood emergency response levels, and a range of innovations are being applied to improve response effectiveness. Although the uniqueness of each flood and the inherent unpredictability involved in flood events means that sometimes flood warnings may not perform as expected, flood warning science is helping to minimize these occurrences.

Article

A range of environmental and social dimensions of disasters occur in or are affected by the mountain cryosphere (MC). Core areas have glaciers and permafrost, intensive freeze-thaw, and seasonally abundant melt waters. A variety of cryospheric hazards is involved, their dangers magnified by steep, high, and rugged terrain. Some unique threats are snow or ice avalanches and glacial lake outburst floods. These highlight the classic alpine zones, but cryospheric hazards occur in more extensive parts of mountain ecosystems, affecting greater populations and more varied settings. Recently, habitat threats have become identified with global climate warming: receding glaciers, declining snowfall, and degrading permafrost. Particularly dangerous prospects arise with changing hazards in the populous mid-latitude and tropical high mountains. Six modern calamities briefly introduce the kinds of dangers and human contexts engaged. Disaster style and scope differs between events confined to the MC, others in which it is only a part or is a source of dangerous processes that descend into surrounding lowlands. The MC is also affected by non-cryospheric hazards, notably earthquake and volcanism. In human terms, the MC shares many disaster risk issues with other regions. Economy and land use, poverty or gender, for instance, are critical aspects of exposure and protections, or lack of them. This situates disaster risk within human ecological and adaptive relations to the predicaments of cold and steepland terrain. A great diversity of habitats and cultures is recognized. “Verticality” offers a unifying theme; characterizing the MC through ways in which life forms, ecosystems, and human settlement adjust to altitudinal zones, to upslope transitions, and the downslope cascades of moisture and geomorphic processes. These also give special importance to multi-hazard chains and long-runout processes including floods. Traditional mountain cultures exploit proximity and seasonality of different resources in the vertical, and avoidance of steepland dangers. This underscores sustainability and changing risk for the many surviving agro-pastoral and village economies and the special predicaments of indigenous cultures. Certain common stereotypes, such as remoteness or fragility of mountain habitats, require caution. They tend to overemphasize environmental determinism and underestimate social factors. Nor should they lead to neglect of wealthier, modernized areas, which also benefit most from geophysical research, dedicated agencies, and expert systems. However, modern developments now affect nearly all MC regions, bringing expanding dangers as well as benefits. Threats related to road networks are discussed, from mining and other large-scale resource extraction. Disaster losses and responses are also being rapidly transformed by urbanization. More broadly, highland–lowland relations can uniquely affect disaster risk, as do transboundary issues and initiatives in the mountains stemming from metropolitan centers. Anthropogenic climate warming generates dangers for mountain peoples but originates mainly from lowland activities. The extent of armed conflict affecting the MC is exceptional. Conflicts affect all aspects of human security. In the mountains as most other places, disaster risk reduction (DRR) policies have tended to favor emergency response. A human ecological approach emphasizes the need to pursue avoidance strategies, precautionary and capacity-building measures. Fundamental humanitarian concerns are essential in such an approach, and point to the importance of good governance and ethics.

Article

In the context of this article, risk governance addresses the ways and means—or institutional framework—to lead and manage the issue of risk related to natural phenomena, events, or hazards, also referred to popularly, although incorrectly, as “natural disasters.” At the present time, risk related to natural phenomena includes a major focus on the issue of climate change with which it is intimately connected, climate change being a major source of risk. To lead involves mainly defining policies and proposing legislation, hence proposing goals, conducting, promoting, orienting, providing a vision—namely, reducing the loss of lives and livelihoods as part of sustainable development—also, raising awareness and educating on the topic and addressing the ethical perspective that motivates and facilitates engagement by citizens. To manage involves, among other things, proposing organizational and technical arrangements, as well as regulations allowing the implementation of policies and legislation. Also, it involves monitoring and supervising such implementation to draw further lessons to periodically enhance the policies, legislation, regulations, and organizational and technical arrangements. UNISDR was established in 2000 to promote and facilitate risk reduction, becoming in a few years one of the main promoters of risk governance in the world and the main global advocate from within the United Nations system. It was an honor to serve as the first director of the UNISDR (2001–2011). A first lesson to be drawn from this experience was the need to identify, understand, and address the obstacles not allowing the implementation of what seems to be obvious to the scientific community but of difficult implementation by governments, private sector, and civil society; and alternatively, the reasons for shortcomings and weaknesses in risk governance. A second lesson identified was that risk related to natural phenomena also provides lessons for governance related to other types of risk in society—environmental, financial, health, security, etc., each a separate and specialized topic, sharing, however, common risk governance approaches. A third lesson was the relevance of understanding leadership and management as essential components in governance. Drawing lessons on one’s own experience is always risky as it involves some subjectivity in the analysis. In the article, the aim has, nonetheless, been at the utmost objectivity on the essential learnings in having conducted the United Nations International Strategy for Disaster Reduction—UNISDR—from 2001 to around 2009 when leading and managing was shared with another manager, as I prepared for retirement in 2011. Additional lessons are identified, including those related to risk governance as it is academically conceived, hence, what risk governance includes and how it has been implemented by different international, regional, national, and local authorities. Secondly, I identify those lessons related to the experience of leading and managing an organization focused on disaster risk at the international level and in the context of the United Nations system.

Article

Ljubica Mamula-Seadon

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Natural hazards risk management has developed in conjunction with broader risk management theory and practice. Thus, it reflects a discourse that has characterized this field, particularly in the last decades of the 20th century. Effective implementation of natural hazards risk management strategies requires an understanding of underlying assumptions inherent to specific methodologies, as well as an explication of the process and the challenges embodied in specific approaches to risk mitigation. Historical thinking on risk, as it has unfolded in the last few hundred years, has been exemplified by a juxtaposition between positivist and post-positivist approaches to risk that dominated the risk discourse in the late 20th century. Evolution of the general concept of risk and the progress of scientific rationality modified the relationship of people to natural hazard disasters. The epistemology, derived from a worldview that champions objective knowledge gained through observation and analysis of the predicable phenomena in the world surrounding us, has greatly contributed to this change of attitude. Notwithstanding its successes, the approach has been challenged by the complexity of natural hazard risk and by the requirement for democratic risk governance. The influence of civic movements and social scientists entering the risk management field led to the current approach, which incorporates values and value judgments into risk management decision making. The discourse that generated those changes can be interpreted as positivist vs. post-positivist, influenced by concepts of sustainability and resilience, and generating some common principles, particularly relevant for policy and planning. Examples from different countries, such as New Zealand, illustrate the strengths and weaknesses of the current theory and practice of natural hazards risk management and help identify challenges for the 21st century.

Article

Jason Thistlethwaite and Daniel Henstra

Natural hazards are a complex governance problem. Managing the risks associated with natural hazards requires action at all scales—from household to national—but coordinating these nested responses to achieve a vertically cohesive course of action is challenging. Moreover, though governments have the legal authority and legitimacy to mandate or facilitate natural hazard risk reduction, non-governmental actors such as business firms, industry associations, research organizations and non-profit organizations hold much of the pertinent knowledge and resources. This interdependence demands horizontal collaboration, but coordinating risk reduction across organizational divides is fraught with challenges and requires skillful leadership. Flood risk management (FRM)—an integrated strategy to reduce the likelihood and impacts of flooding—demonstrates the governance challenge presented by natural hazards. By engaging stakeholders, coordinating public and private efforts, and employing a diversity of policy instruments, FRM can strengthen societal resilience, achieve greater efficiency, and enhance the legitimacy of decisions and actions to reduce flood risk. Implementing FRM, however, requires supportive flood risk governance arrangements that facilitate vertical and horizontal policy coordination by establishing strategic goals, negotiating roles and responsibilities, aligning policy instruments, and allocating resources.

Article

Society expects to have a safe environment in which to live, prosper, and sustain future generations. Generally, when we think of threats to our well-being, we think of human-induced causes such as overexploitation of water resources, contamination, and soil loss, to name just a few. However, natural hazards, which are not easily avoided or controllable (or, in many cases, predictable in the short term), have profound influences on our safety, economic security, social development, and political stability, as well as every individual’s overall well-being. Natural hazards are all related to the processes that drive our planet. Indeed, the Earth would not be a functioning ecosystem without the dynamic processes that shape our planet’s landscapes over geologic time. Natural hazards (or geohazards, as they are sometimes called) include such events as earthquakes, volcanic eruptions, landslides and ground collapse, tsunamis, floods and droughts, geomagnetic storms, and coastal storms. A key aspect of these natural hazards involves understanding and mitigating their impacts, which require that the geoscientist take a four-pronged approach. It must include a fundamental understanding of the processes that cause the hazard, an assessment of the hazard, monitoring to observe any changes in conditions that can be used to determine the status of a potential hazardous event, and perhaps most important, delivery of information to a broader community to evaluate the need for action. A fundamental understanding of processes often requires a research effort that typically is the focus of academic and government researchers. Fundamental questions may include: (a) What triggers an earthquake, and why do some events escalate to a great magnitude while most are small-magnitude events?; (b) What processes are responsible for triggering a landslide?; (c) Can we predict the severity of an impending volcanic eruption? (d) Can we predict an impending drought or flood?; (e) Can we determine the height of a storm surge or storm track associated with coastal storm well in advance of landfall so that the impact can be mitigated? Any effective hazard management system must strive to increase resilience. The only way to gain resiliency is to learn from past events and to decrease risk. To successfully increase resiliency requires having strong hazard identification programs with adequate monitoring and research components and very robust delivery mechanisms that deliver timely, accurate, and appropriate hazard information to a broad audience that will use the information is a wide variety of ways to meet their specific goals.

Article

The collaborative disaster risk governance framework promises better collaboration between governments, the private sector, civil society, academia, and communities at risks. In the context of modern disaster risk reduction systems, the key triadic institutions, namely government (state), the private sector (business/market), and NGOs (civil society), have been gradually transforming their ecosystem to utilize more proactive disaster response strategies, equipped with professional staff and technical experts and armed with social and humanitarian imperatives to reduce the risks of disasters. While the roles of governments and public actions have received greater attention in disaster and emergency management studies, recent shifts in attention to promote bolder engagements of both non-governmental organizations and business communities in risk reduction can be seen as a necessary condition for the future resilience of society. Historically speaking, NGOs have exercised models of moral imperative whereby they build their relevancy and legitimacy to address gaps and problems at global and local levels. NGOs have been part of the global disaster risk reduction (DRR) ecosystem as they continue to shape both humanitarian emergencies action and the DRR agenda at different levels where their presence is needed and valued and their contribution is uniquely recognized. This article exemplifies the roles of NGOs at different levels and arenas ranging from local to international disaster risk reduction during the last 70 years, especially since World War II. It also provides examples of potential roles of NGOs under the Sendai Framework for Disaster Risk Reduction 2030.

Article

Recent extreme hydrological events (e.g., in the United States in 2005 or 2012, Pakistan in 2010, and Thailand in 2011) revealed increasing flood risks due to climate and societal change. Consequently, the roles of multiple stakeholders in flood risk management have transformed significantly. A central aspect here is the question of sharing responsibilities among global, national, regional, and local stakeholders in organizing flood risk management of all kinds. This new policy agenda of sharing responsibilities strives to delegate responsibilities and costs from the central government to local authorities, and from public administration to private citizens. The main reasons for this decentralization are that local authorities can deal more efficiently with public administration tasks concerned with risks and emergency management. Resulting locally based strategies for risk reduction are expected to tighten the feedback loops between complex environmental dynamics and human decision-making processes. However, there are a series of consequences to this rescaling process in flood risk management, regarding the development of new governance structures and institutions, like resilience teams or flood action groups in the United Kingdom. Additionally, downscaling to local-level tasks without additional resources is particularly challenging. This development has tightened further with fiscal and administrative cuts around the world resulting from the global economic crisis of 2007–2008, which tightening eventually causes budget restrictions for flood risk management. Managing local risks easily exceeds the technical and budgetary capacities of municipal institutions, and individual citizens struggle to carry the full responsibility of flood protection. To manage community engagement in flood risk management, emphasis should be given to the development of multi-level governance structures, so that multiple stakeholders share fairly the power, resources, and responsibility in disaster planning. If we fail to do so, some consequences would be: (1), “hollowing out” the government, including the downscaling of the responsibility towards local stakeholders; and (2), inability of the government to deal with the new tasks due to lack of resources transferred to local authorities.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Spatial and urban planning are acknowledged as important tools and processes that influence exposure to natural and technical hazards and risk accumulation, as well as risk and vulnerability reduction. Even though natural hazards (such as floods) and technical hazards have been discussed in spatial and urban planning for quite some time in various countries and regions, only in a very few cities and regions has there been a sufficient and systematic approach to establish risk management as part of the planning task within the field of spatial planning and urban land-use planning. Risk management strategies in spatial and urban planning have often been strengthened after major crises, such as severe fires in the middle ages in cities in Europe, or after major floods or hurricanes in North America, Asia, and Latin America, as well as Europe and Africa. In this context, risk management is understood as a cluster of concrete and practical strategies and actions on how to handle risks, and in terms of spatial and urban planning, including those risks that are of spatial importance or significant with regard to planning processes.

Article

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Today, women are widely recognized around the world as leaders, innovators, and trailblazers in promoting important agendas to uplift society. Mother Teresa’s charitable work is one example, and Malala Yousafzai’s work on children’s rights is another. Both are Nobel Peace Prize awardees. The dramatic shift, from regarding women as simply a homogenous group to seeing a growing number of women at the forefront of advancing innovative ways to build safe and resilient communities, has been embraced. Women’s constructive role in development on many fronts and at various levels is celebrated globally. Their capacities, tempered by compassion and sharpened by tenacity, contribute significantly to further strengthening their own resilience, as well as the resilience of their communities. In the world of disaster risk reduction and development, women have become vanguards in promoting good disaster risk reduction governance. The role of women (as individuals or as members and leaders of civil society organizations) in advocating for the mitigation, or even elimination, of disaster risks has become more pronounced as they bear the double burden of caring for home and community. That women now speak with greater authority on disaster risk reduction, environmental governance, or sustainable development in the larger public sphere, is a testament to their hard-won victory in making the world sit up and listen to those whose voices are least heard—including theirs.