Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 09 June 2023

Biosonar and Sound Localization in Dolphinslocked

Biosonar and Sound Localization in Dolphinslocked

  • Paul E. NachtigallPaul E. NachtigallHawaii Institute of Marine Biology, University of Hawaii


Toothed whales and dolphins, odontocete cetaceans, produce very loud biosonar sounds in order to navigate and to locate and catch their prey of fish and squid. Underwater biosonar was not discovered until after 1950, but the initial experiments demonstrated a unique sensory modality that could find small targets far away and distinguish between objects buried in mud that differed only by the metal from which they were made. Dolphins determine the distance to their prey by evaluating very small time differences between the outgoing signal and the echo return. The type of outgoing signal varies greatly from low frequency, explosively loud sperm whale clicks, to frequency modulated mid-frequency beaked whale sounds, to very high frequency (over 100 kHz) harbor porpoise signals. All appear to be made by specialized pneumatic phonic lips closely connected to sound projecting fatty melons that focus sound before sending out narrow echolocation sound beams. The frequency of most hearing is matched to echolocation, with the areas of best hearing of the animals being the areas of principal outgoing signal frequency. The sensation levels of hearing are under the animal’s control with “automatic gain control” operating to assure the best hearing of the echo returns. Angular localization of the bottlenose dolphins, for discriminating the minimum audible angles of clicks, is less than one degree in both the horizontal and vertical directions. This remarkable localization performance has yet to be fully explained, but new hypotheses of gular pathways, shaded receiver models, and internal pinnae may provide some explanations as a theory of auditory localization in the odontocetes develops.


  • Sensory Systems

You do not currently have access to this article


Please login to access the full content.


Access to the full content requires a subscription