Oxford Research Encyclopedia of Neuroscience is now available via subscription and perpetual access. Visit About to learn more, meet the editorial board, or learn how to subscribe.

Dismiss
Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 07 July 2020

Summary and Keywords

American gymnotiformes and African mormyriformes have evolved an active sensory system using a self-generated electric field as a carrier of signals. Objects polarized by the discharge of a specialized electric organ project their images on the skin where electroreceptors tuned to the time course of the self-generated field transduce local signals carrying information about impedance, shape, size, and location of objects, as well as electrocommunication messages, and encode them as primary afferents trains of spikes. This system is articulated with other cutaneous systems (passive electroreception and mechanoception) as well as proprioception informing the shape of the fish’s body. Primary afferents project on the electrosensory lobe where electrosensory signals are compared with expectation signals resulting from the integration of recent past electrosensory, other sensory, and, in the case of mormyriformes, electro- and skeleton-motor corollary discharges. This ensemble of signals converges on the apical dendrites of the principal cells where a working memory of the recent past, and therefore predictable input, is continuously built up and updated as a pattern of synaptic weights. The efferent neurons of the electrosensory lobe also project to the torus and indirectly to other brainstem nuclei that implement automatic electro- and skeleton-motor behaviors. Finally, the torus projects via the preglomerular nucleus to the telencephalon where cognitive functions, including “electroperception” of shape-, size- and impedance-related features of objects, recognition of conspecifics, perception based decisions, learning, and abstraction, are organized.

Keywords: haptic sense, electric imaging, neural code, “electric color,”, coincidence detection, cerebellum-like circuit, novelty response, spike timing dependent plasticity, fish cognition

Access to the complete content on Oxford Research Encyclopedia of Neuroscience requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.