Oxford Research Encyclopedia of Neuroscience is now available via subscription and perpetual access. Visit About to learn more, meet the editorial board, or learn how to subscribe.

Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 19 October 2020

Abstract and Keywords

Sensory systems exist to provide an organism with information about the state of the environment that can be used to guide future actions and decisions. Remarkably, two conceptually simple yet general theorems from information theory can be used to evaluate the performance of any sensory system. One theorem states that there is a minimal amount of energy that an organism has to spend in order to capture a given amount of information about the environment. The second theorem states that the maximum rate with which the organism can acquire resources from the environment, relative to its competitors, is limited by the information this organism collects about the environment, also relative to its competitors.

These two theorems provide a scaffold for formulating and testing general principles of sensory coding but leave unanswered many important practical questions of implementation in neural circuits. These implementation questions have guided thinking in entire subfields of sensory neuroscience, and include: What features in the sensory environment should be measured? Given that we make decisions on a variety of time scales, how should one solve trade-offs between making simpler measurements to guide minimal decisions vs. more elaborate sensory systems that have to overcome multiple delays between sensation and action. Once we agree on the types of features that are important to represent, how should they be represented? How should resources be allocated between different stages of processing, and where is the impact of noise most damaging? Finally, one should consider trade-offs between implementing a fixed strategy vs. an adaptive scheme that readjusts resources based on current needs. Where adaptation is considered, under what conditions does it become optimal to switch strategies? Research over the past 60 years has provided answers to almost all of these questions but primarily in early sensory systems. Joining these answers into a comprehensive framework is a challenge that will help us understand who we are and how we can make better use of limited natural resources.

Keywords: efficient coding, information theory, adaptation, predictive coding, predictive information, receptive fields

Access to the complete content on Oxford Research Encyclopedia of Neuroscience requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.