Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 06 October 2022

Behavioral Neuroendocrinology: Cognitionlocked

Behavioral Neuroendocrinology: Cognitionlocked

  • Victoria LuineVictoria LuineDepartment of Psychology, Hunter College, City University of New York

Summary

The demonstration of steroid binding proteins in brain areas outside of the hypothalamus was a key neuroendocrine discovery in the 1980s. These findings suggested that gonadal hormones, estradiol and testosterone, may have additional functions besides controlling reproduction through the hypothalamic–pituitary–gonadal axis (HPG) and that glucocorticoids may also influence neural functions not related to the hypothalamic–pituitary–adrenal axis (HPA). In the past 30 years, since the early 1990s, a body of neuroendocrine studies in animals has provided evidence for these hypotheses, and in 2020, it is generally accepted that steroid hormones exert robust influences over cognition—both learning and memory. Gonadal hormones, predominantly estrogens, enhance learning and memory in rodents and humans and influence cognitive processes throughout the lifespan. Gonadal hormones bind to classical nuclear estrogen receptors and to membrane receptors to influence cognition. In contrast to the generally positive effects of gonadal hormones on learning and memory, adrenal hormones (glucocorticoids in rodents or cortisol in primates) released during chronic stress have adverse effects on cognition, causing impairments in both learning and memory. However, emerging evidence suggests that impairments may be limited only to males, as chronic stress in females does not usually impair cognition and, in many cases, enhances it. The cognitive resilience of females to stress may result from interactions between the HPG and HPA axis, with estrogens exerting neuroprotective effects against glucocorticoids at both the morphological and neurochemical level. Overall, knowledge of the biological underpinnings of hormonal effects on cognitive function has enormous implications for human health and well-being by providing novel tools for mitigating memory loss, for treating stress-related disorders, and for understanding the bases for resilience versus susceptibility to stress.

Subjects

  • Neuroendocrine and Autonomic Systems

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription