Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 31 October 2020

Stomatopod Visionlocked

  • Thomas W. Cronin, Thomas W. CroninDepartment of Biological Sciences, University of Maryland, Baltimore County
  • N. Justin MarshallN. Justin MarshallSensory Neurobiology, University of Queensland
  •  and Roy L. CaldwellRoy L. CaldwellIntegrative Biology, University of California, Berkeley

Summary

The predatory stomatopod crustaceans, or mantis shrimp, are among the most attractive and dynamic creatures living in the sea. Their special features include their powerful raptorial appendages, used to kill, stun, or disable other animals (whether predators, prey, or competitors), and their highly specialized compound eyes. Mantis shrimp vision is unlike that of any other animal and has several unique features. Their compound eyes are optically triple, each having three separate regions that produce overlapping visual fields viewing certain regions of space. They have the most diverse set of spectral classes of receptors ever described in animals, with as many as 16 types in a single compound eye. These receptors are based on a highly duplicated set of opsin molecules paired with strongly absorbing photostable filters in some photoreceptor types. The receptor set includes six ultraviolet types, all spectrally distinct, many themselves tuned by photostable filters. There are as many as eight types of polarization receptors of up to three spectral classes (including an ultraviolet class). In some species, two sets of these receptors analyze circularly polarized light, another unique capability. Stomatopod eyes move independently, each capable of visual field stabilization, image foveation and tracking, or scanning of image features. Stomatopods are known to recognize colors and polarization features and evidently use these in predation and communication. Altogether, mantis shrimps have perhaps the most unusual vision of any animal.

Subjects

  • Invertebrate Neurobiology

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription