Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 29 November 2022

Insect Color Visionlocked

Insect Color Visionlocked

  • Natalie Hempel de IbarraNatalie Hempel de IbarraUniversity of Exeter
  •  and Misha VorobyevMisha VorobyevUniversity of Auckland

Summary

Color plays an important role in insect life—many insects forage on colorful flowers and/or have colorful bodies. Accordingly, most insects have multiple spectral types of photoreceptors in their eyes, which gives them the capability to see colors. However, insects cannot perceive colors in the same way as human beings do because their eyes and brains differ substantially. An insect was the first nonhuman animal whose ability to discriminate colors has been demonstrated - in the beginning of the 20th century, von Frisch showed that the honeybee, Apis mellifera, can discriminate blue from any shade of gray. This method, called the gray-card experiment, is an accepted “gold standard” for the proof of color vision in animals. Insect species differ in the combinations of photoreceptors in their eyes, with peak sensitivities in ultraviolet (UV) and/or blue, green, and sometimes red parts of the spectrum. The number of photoreceptor spectral types can be as little as one or two, as in the grasshopper Phlaeoba and the beetle Tribolium, and as many as 10 and more in some species of butterflies and dragonflies. However, not all spectral receptor types are necessarily used for color vison. For example, the butterfly Papilio xuthus uses only four of its eight photoreceptors for color vision. Some insects have separate channels for processing chromatic and achromatic (lightness) information. In the honeybee, the achromatic channel has high spatial resolution and is mediated only by long-wavelength sensitive, or “green,” photoreceptors alone, whereas the spatial resolution of chromatic vision is low and mediated by all three spectral types of photoreceptors. Whether other insects have a similar separation of chromatic and achromatic vision remains uncertain. In contrast to vertebrates, insects do not use distinct sets of photoreceptors for nocturnal vision, and some nocturnal insects can see color at night. Insect photoreceptors are inherently polarization sensitive because of their microvillar organization. Therefore, some insects cannot discriminate changes in polarization of light from changes in its spectral composition. However, many insects sacrifice polarization sensitivity to retain reliable color vision. For example, in the honeybee, polarization sensitivity is eliminated by twisting the rhabdom in most parts of its compound eye except for the dorsal rim area that is specialized in polarization vision. Insects experience color constancy and color-contrast phenomena. Although in humans these aspects of vision are often attributed to cortical processing of color, simple models based on photoreceptor adaptation may explain color constancy and color induction in insects. Color discriminations can be evaluated using a simple model, which assumes that it is limited by photoreceptor noise. This model can help to predict discrimination of colors that are ecologically relevant, such as flower colors for pollinating insects. However, despite the fact that many insects forage on flowers, there is no evidence that insect pollinator vision coevolved with flower colors. The diverse color vision in butterflies appears to adaptively facilitate the recognition of their wing colors.

Subjects

  • Sensory Systems
  • Invertebrate Neuroscience

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription