Oxford Research Encyclopedia of Neuroscience is now available via subscription and perpetual access. Visit About to learn more, meet the editorial board, or learn how to subscribe.

Dismiss
Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 21 September 2020

Summary and Keywords

Visual camouflage change is a hallmark of octopus, squid, and cuttlefish and serves as their primary defense against predators. They can change their total body appearance in less than a second due to one principal feature: every aspect of this sensorimotor system is neurally refined for speed. Cephalopods live in visually complex environments such as coral reefs and kelp forests and use their visual perception of backgrounds to rapidly decide which camouflage pattern to deploy. Counterintuitively, cuttlefish have evolved a small number of pattern designs to achieve camouflage: Uniform, Mottle, and Disruptive, each with variation. The expression of these body patterns is based on several fundamental scene features. In cuttlefish, there appear to be several “visual assessment shortcuts” that enable camouflage patterning change in as little as 125 milliseconds. Neural control of the dynamic body patterning of cephalopods appears to be organized hierarchically via a set of lobes within the brain, including the optic lobes, the lateral basal lobes, and the anterior/posterior chromatophore lobes. The motor output of the central nervous system (CNS) in terms of the skin patterns that are produced is under sophisticated neural control of chromatophores, iridophores, and three-dimensional skin papillae. Moreover, arm postures and skin papillae are also regulated visually for additional aspects of concealment. This coloration system, often referred to as rapid neural polyphenism, is unique in the animal kingdom and can be explained and interpreted in the context of sensory and behavioral ecology.

Keywords: color, pattern, neuroethology, octopus, squid, cuttlefish, vision, polyphenism, defense

Access to the complete content on Oxford Research Encyclopedia of Neuroscience requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.