Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 12 June 2021

Navigation Towards the Source Through Chemosensory Strategies and Mechanismslocked

Navigation Towards the Source Through Chemosensory Strategies and Mechanismslocked

  • Yaniv CohenYaniv CohenIYAR, The Israeli Institute for Advanced Research

Summary

Asymmetry of bilateral visual and auditory sensors has functional advantages for depth visual perception and localization of auditory signals, respectively. In order to detect the spatial distribution of an odor, bilateral olfactory organs may compare side differences of odor intensity and timing by using a simultaneous sampling mechanism; alternatively, they may use a sequential sampling mechanism to compare spatial and temporal input detected by one or several chemosensors. Extensive research on strategies and mechanisms necessary for odor source localization has been focused mainly on invertebrates. Several recent studies in mammals such as moles, rodents, and humans suggest that there is an evolutionary advantage in using stereo olfaction for successful navigation towards an odor source. Smelling in stereo or a three-dimensional olfactory space may significantly reduce the time to locate an odor source; this quality provides instantaneous information for both foraging and predator avoidance. However, since mammals are capable of finding odor sources and tracking odor trails with one sensor side blocked, they may use an intriguing temporal mechanism to compare odor concentration from sniff to sniff. A particular focus of this article is attributed to differences between insects and mammals regarding the use of unilateral versus bilateral chemosensors for odor source localization.

Subjects

  • Sensory Systems

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription