Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 28 February 2024

Plasticity of Information Processing in the Auditory Systemlocked

Plasticity of Information Processing in the Auditory Systemlocked

  • Andrew J. KingAndrew J. KingDepartment of Physiology, Anatomy & Genetics (DPAG), University of Oxford

Summary

Information processing in the auditory system shows considerable adaptive plasticity across different timescales. This ranges from very rapid changes in neuronal response properties—on the order of hundreds of milliseconds when the statistics of sounds vary or seconds to minutes when their behavioral relevance is altered—to more gradual changes that are shaped by experience and learning. Many aspects of auditory processing and perception are sculpted by sensory experience during sensitive or critical periods of development. This developmental plasticity underpins the acquisition of language and musical skills, matches neural representations in the brain to the statistics of the acoustic environment, and enables the neural circuits underlying the ability to localize sound to be calibrated by the acoustic consequences of growth-related changes in the anatomy of the body. Although the length of these critical periods depends on the aspect of auditory processing under consideration, varies across species and brain level, and may be extended by experience and other factors, it is generally accepted that the potential for plasticity declines with age. Nevertheless, a substantial degree of plasticity is exhibited in adulthood. This is important for the acquisition of new perceptual skills; facilitates improvements in the detection or discrimination of fine differences in sound properties; and enables the brain to compensate for changes in inputs, including those resulting from hearing loss. In contrast to the plasticity that shapes the developing brain, perceptual learning normally requires the sound attribute in question to be behaviorally relevant and is driven by practice or training on specific tasks. Progress has recently been made in identifying the brain circuits involved and the role of neuromodulators in controlling plasticity, and an understanding of plasticity in the central auditory system is playing an increasingly important role in the treatment of hearing disorders.

Subjects

  • Development
  • Sensory Systems

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription