1-8 of 8 Results  for:

  • Molecular and Cellular Systems x
  • Disorders of the Nervous System x
Clear all

Article

Kristina A. Kigerl and Phillip G. Popovich

Spinal cord injury (SCI) disrupts the autonomic nervous system (ANS) and impairs communication with organ systems throughout the body, resulting in chronic multi-organ pathology and dysfunction. This dysautonomia contributes to the pronounced immunosuppression and gastrointestinal dysfunction seen after SCI. All of these factors likely contribute to the development of gut dysbiosis after SCI—an imbalance in the composition of the gut microbiota that can impact the development and progression of numerous pathological conditions, including SCI. The gut microbiota are the community of microbes (bacteria, viruses, fungi) that live in the GI tract and are critical for nutrient absorption, digestion, and immune system development. These microbes also communicate with the CNS through modulation of the immune system, production of neuroactive metabolites and neurotransmitters, and activation of the vagus nerve. After SCI, gut dysbiosis develops and persists for more than one year from the time of injury. In experimental models of SCI, gut dysbiosis is correlated with changes in inflammation and functional recovery. Moreover, probiotic treatment can improve locomotor recovery and immune function in the gut-associated lymphoid tissue (GALT). Since different types of bacteria produce different metabolites with unique physiological and pathological effects throughout the body, it may be possible to predict the prevalence or severity of post-injury immune dysfunction and other related comorbidities (e.g., metabolic disease, fatigue, anxiety) using microbiome sequencing data. As research identifies microbial-derived small molecules and the genes responsible for their production, it is likely that it will become feasible to manipulate these molecules to affect human biology and disease.

Article

Jeremy C. Borniger and Luis de Lecea

The hypocretins (also known as orexins) are selectively expressed in a subset of lateral hypothalamic neurons. Since the reports of their discovery in 1998, they have been intensely investigated in relation to their role in sleep/wake transitions, feeding, reward, drug abuse, and motivated behavior. This research has cemented their role as a subcortical relay optimized to tune arousal in response to various salient stimuli. This article reviews their discovery, physiological modulation, circuitry, and integrative functionality contributing to vigilance state transitions and stability. Specific emphasis is placed on humoral and neural inputs regulating hcrt neural function and new evidence for an autoimmune basis of the sleep disorder narcolepsy. Future directions for this field involve dissection of the heterogeneity of this neural population using single-cell transcriptomics, optogenetic, and chemogenetics, as well as monitoring population and single cell activity. Computational models of the hypocretin network, using the “flip-flop” or “integrator neuron” frameworks, provide a fundamental understanding of how this neural population influences brain-wide activity and behavior.

Article

Gretchen N. Neigh, Mandakh Bekhbat, and Sydney A. Rowson

Bidirectional interactions between the immune system and central nervous system have been acknowledged for centuries. Over the past 100 years, pioneering studies in both animal models and humans have delineated the behavioral consequences of neuroimmune activation, including the different facets of sickness behavior. Rodent studies have uncovered multiple neural pathways and mechanisms that mediate anorexia, fever, sleep alterations, and social withdrawal following immune activation. Furthermore, work conducted in human patients receiving interferon treatment has elucidated some of the mechanisms underlying immune-induced behavioral changes such as malaise, depressive symptoms, and cognitive deficits. These findings have provided the foundation for development of treatment interventions for conditions in which dysfunction of immune-brain interactions leads to behavioral pathology. Rodent models of neuroimmune activation frequently utilize endotoxins and cytokines to directly stimulate the immune system. In the absence of pathogen-induced inflammation, a variety of environmental stressors, including psychosocial stressors, also lead to neuroimmune alterations and concurrent behavioral changes. These behavioral alterations can be assessed using a battery of behavioral paradigms while distinguishing acute sickness behavior from the type of behavioral outcome being assessed. Animal studies have also been useful in delineating the role of microglia, the neuroendocrine system, neurotransmitters, and neurotrophins in mediating the behavioral implications of altered neuroimmune activity. Furthermore, the timing and duration of neuroimmune challenge as well as the sex of the organism can impact the behavioral manifestations of altered neuroimmune activity. Finally, neuroimmune modulation through pharmacological or psychosocial approaches has potential for modulating behavior.

Article

Edgar T. Walters

Chronic pain lasting months or longer is very common, poorly treated, and sometimes devastating. Nociceptors are sensory neurons that usually are silent unless activated by tissue damage or inflammation. In humans their peripheral activation evokes conscious pain, and their spontaneous activity is highly correlated with spontaneous pain. Persistently hyperactive nociceptors mediate increased responses to normally painful stimuli (hyperalgesia) in chronic conditions and promote the sensitization of central pain pathways that allows low-threshold mechanoreceptors to elicit painful responses to innocuous stimuli (allodynia). Investigations of rodent models of neuropathic pain and hyperalgesic priming have revealed many alterations in nociceptors and associated cells that are implicated in the development and maintenance of chronic pain. These include chronic nociceptor hyperexcitability and spontaneous activity, sprouting, synaptic plasticity, changes in intracellular signaling, and modified responses to opioids, along with alterations in the expression and translation of thousands of genes in nociceptors and closely linked cells.

Article

Human spinal cord injury (SCI) results in long-lasting disabilities due to the failure of damaged neurons to regenerate. The barriers to axon regeneration in mammalian central nervous system (CNS) are so great, and the anatomy so complex that incremental changes in regeneration brought about by pharmacological or molecular manipulations can be difficult to demonstrate. By contrast, lampreys recover functionally after a complete spinal cord transection (TX), based on regeneration of severed axons, even though lampreys share the basic organization of the mammalian CNS, including many of the same molecular barriers to regeneration. And because the regeneration is incomplete, it can be studied by manipulations designed to either inhibit or enhance it. In the face of reduced descending input, recovery of swimming and other locomotor functions must be accompanied by compensatory remodeling throughout the CNS, as would be required for functional recovery in mammals. For such studies, lampreys have significant advantages. They have several large, identified reticulospinal (RS) neurons, whose regenerative abilities have been individually quantified. Other large neurons and axons are visible in the spinal cord and can be impaled with microelectrodes under direct microscopic vision. The central pattern generator for locomotion is exceptionally well-defined, and is subject to significant neuromodulation. Finally, the lamprey genome has been sequenced, so that molecular homologs of human genes can be identified and cloned. Because of these advantages, the lamprey spinal cord has been a fertile source of information about the biology of axon regeneration in the vertebrate CNS, and has the potential to serve as a test bed for the investigation of novel therapeutic approaches to SCI and other CNS injuries.

Article

William H. Walker II and A. Courtney DeVries

Neuroimmunology is the study of the interaction between the immune system and nervous system during development, homeostasis, and disease states. Descriptions of neuroinflammatory diseases dates back centuries. However, in depth scientific investigation in the field began in the late 19th century and continues into the 21st century. Contrary to prior dogma in the field of neuroimmunology, there is immense reciprocal crosstalk between the brain and the immune system throughout development, homeostasis, and disease states. Proper neuroimmune functioning is necessary for optimal health, as the neuroimmune system regulates vital processes including neuronal signaling, synapse pruning, and clearance of debris and pathogens within the central nervous system. Perturbations in optimal neuroimmune functioning can have detrimental consequences for the host and underlie a myriad of physical, cognitive, and behavioral abnormalities. As such, the field of neuroimmunology is still relatively young and dynamic and represents an area of active research and discovery.

Article

Dayna L. Averitt, Rebecca S. Hornung, and Anne Z. Murphy

The modulatory influence of sex hormones on acute pain, chronic pain disorders, and pain management has been reported for over seven decades. The effect of hormones on pain is clearly evidenced by the multitude of chronic pain disorders that are more common in women, such as headache and migraine, temporomandibular joint disorder, irritable bowel syndrome, chronic pelvic pain, fibromyalgia, rheumatoid arthritis, and osteoarthritis. Several of these pain disorders also fluctuate in pain intensity over the menstrual cycle, including headache and migraine and temporomandibular joint disorder. The sex steroid hormones (estrogen, progesterone, and testosterone) as well as some peptide hormones (prolactin, oxytocin, and vasopressin) have been linked to pain by both clinical and preclinical research. Progesterone and testosterone are widely accepted as having protective effects against pain, while the literature on estrogen reports both exacerbation and attenuation of pain. Prolactin is reported to trigger pain, while oxytocin and vasopressin have analgesic properties in both sexes. Only in the last two decades have neuroscientists begun to unravel the complex anatomical and molecular mechanisms underlying the direct effects of sex hormones and mechanisms have been reported in both the central and peripheral nervous systems. Mechanisms include directly or indirectly targeting receptors and ion channels on sensory neurons, activating pain excitatory or pain inhibitory centers in the brain, and reducing inflammatory mediators. Despite recent progress, there remains significant controversy and challenges in the field and the seemingly pleiotropic role estrogen plays on pain remains ambiguous. Current knowledge of the effects of sex hormones on pain has led to the burgeoning of gender-based medicine, and gaining further insight will lead to much needed improvement in pain management in women.

Article

Spinal cord injury is characterized by a complex set of events, which include the disruption of connectivity between the brain and the periphery with little or no spontaneous regeneration, resulting in motor, sensory and autonomic deficits. Transplantation of neural stem cells has the potential to provide the cellular components for repair of spinal cord injury (SCI), including oligodendrocytes, astrocytes, and neurons. The ability to generate graft-derived neurons can be used to restore connectivity by formation of functional relays. The critical requirements for building a relay are to achieve long-term survival of graft-derived neurons and promote axon growth into and out of the transplant. Recent studies have demonstrated that mixed populations of glial and neuronal progenitors provide a permissive microenvironment for survival and differentiation of early-stage neurons, but inclusion of growth factors with the transplant or cues for directional axon growth outside the transplant may also be needed. Other important considerations include the timing of the transplantation and the selection of a population of neurons that maximizes the effective transmission of signals. In some experiments, the essential neuronal relay formation has been developed in both sensory and motor systems related to locomotion, respiration, and autonomic functions. Despite impressive advances, the poor regenerative capacity of adult CNS combined with the inhibitory environment of the injury remain a challenge for achieving functional connectivity via supraspinal tracts, but it is possible that recruitment of local propriospinal neurons may facilitate the formation of relays. Furthermore, it is clear that the new connections will not be identical to the original innervation, and therefore there needs to be a mechanism for translating the resulting connectivity into useful function. A promising strategy is to mimic the process of neural development by exploiting the remarkable plasticity associated with activity and exercise to prune and strengthen synaptic connections. In the meantime, the sources of neural cells for transplantation are rapidly expanding beyond the use of fetal CNS tissue and now include pluripotent ES and iPS cells as well as cells obtained by direct reprogramming. These new options can provide considerable advantages with respect to preparation of cell stocks and the use of autologous grafting, but they present challenges of complex differentiation protocols and risks of tumor formation. It is important to note that although neural stem cell transplantation into the injured spinal cord is primarily designed to provide preclinical data for the potential treatment of patients with SCI, it can also be used to develop analogous protocols for repair of neuronal circuits in other regions of the CNS damaged by injury or neurodegeneration. The advantages of the spinal cord system include well-defined structures and a large array of quantitative functional tests. Therefore, studying the formation of a functional relay will address the fundamental aspects of neuronal cell replacement without the additional complexities associated with brain circuits.