Odor- or chemical-guided behavior is expressed in all species. Such behavioral responses to odors begin with transduction at olfactory receptors and, after initial processing in early stages of the olfactory system (e.g., vertebrate olfactory bulb, invertebrate antennal lobe), the information is rapidly (within one to two synapses) distributed to diverse brain regions controlling hedonics, metabolic balance, mating, and spatial navigation, among many other basic functions. Odors can not only drive or guide specific behavioral responses but can also modulate behavioral choices and affective state, in many cases in humans without conscious awareness. Many of the specific neural circuits underlying odor-guided behaviors have been partially described, though much remains unknown. Neural processes underlying odor-guided reward and aversion, kin recognition, feeding, orientation, and navigation across diverse species have been discussed, as well as odor modulation of human behavior and emotion.
81-100 of 159 Results
Article
Giuliano Gaeta, Regina M. Sullivan, and Donald A. Wilson
Article
Justin D. Lieber and Sliman J. Bensmaia
The ability to identify tactile objects depends in part on the perception of their surface microstructure and material properties. Texture perception can, on a first approximation, be described by a number of nameable perceptual axes, such as rough/smooth, hard/soft, sticky/slippery, and warm/cool, which exist within a complex perceptual space. The perception of texture relies on two different neural streams of information: Coarser features, measured in millimeters, are primarily encoded by spatial patterns of activity across one population of tactile nerve fibers, while finer features, down to the micron level, are encoded by finely timed temporal patterns within two other populations of afferents. These two streams of information ascend the somatosensory neuraxis and are eventually combined and further elaborated in the cortex to yield a high-dimensional representation that accounts for our exquisite and stable perception of texture.
Article
Adam Hockley and Susan E. Shore
Tinnitus is the perception of sound that is independent from an external stimulus. Despite the word tinnitus being derived from the Latin verb for ring, tinnire, it can present as buzzing, hissing, or clicking. Tinnitus is generated centrally in the auditory pathway; however, the neural mechanisms underlying this generation have been disputed for decades. Although it is well accepted that tinnitus is produced by damage to the auditory system by exposure to loud sounds, the level of damage required and how this damage results in tinnitus are unclear.
Neural recordings in the auditory brainstem, midbrain, and forebrain of animals with models of tinnitus have revealed increased spontaneous firing rates, capable of being perceived as a sound. There are many proposed mechanisms of how this increase is produced, including spike-timing-dependent plasticity, homeostatic plasticity, central gain, reduced inhibition, thalamocortical dysrhythmia, and increased inflammation. Animal studies are highly useful for testing these potential mechanisms because the noise damage can be carefully titrated and recordings can be made directly from neural populations of interest. These studies have advanced the field greatly; however, the limitations are that the variety of models for tinnitus induction and quantification are not well standardized, which may explain some of the variability seen across studies.
Human studies use patients with tinnitus (but an unknown level of cochlear damage) to probe neural mechanisms of tinnitus. They use noninvasive methods, often recoding gross evoked potentials, oscillations, or imaging brain activity to determine if tinnitus sufferers show altered processing of sounds or silence. These studies have also revealed putative neural mechanisms of tinnitus, such as increased delta- or gamma-band cortical activity, altered Bayesian prediction of incoming sound, and changes to limbic system activity.
Translation between animal and human studies has allowed some neural correlates of tinnitus to become more widely accepted, which has in turn allowed deeper research into the underlying mechanism of the correlates. As the understanding of neural mechanisms of tinnitus grows, the potential for treatments is also improved, with the ultimate goal being a true treatment for tinnitus perception.
Article
Understanding the principles by which sensory systems represent natural stimuli is one of the holy grails of neuroscience. In the auditory system, the study of the coding of natural sounds has a particular prominence. Indeed, the relationships between neural responses to simple stimuli (usually pure tone bursts)—often used to characterize auditory neurons—and complex sounds (in particular natural sounds) may be complex. Many different classes of natural sounds have been used to study the auditory system. Sound families that researchers have used to good effect in this endeavor include human speech, species-specific vocalizations, an “acoustic biotope” selected in one way or another, and sets of artificial sounds that mimic important features of natural sounds.
Peripheral and brainstem representations of natural sounds are relatively well understood. The properties of the peripheral auditory system play a dominant role, and further processing occurs mostly within the frequency channels determined by these properties. At the level of the inferior colliculus, the highest brainstem station, representational complexity increases substantially due to the convergence of multiple processing streams. Undoubtedly, the most explored part of the auditory system, in term of responses to natural sounds, is the primary auditory cortex. In spite of over 50 years of research, there is still no commonly accepted view of the nature of the population code for natural sounds in the auditory cortex. Neurons in the auditory cortex are believed by some to be primarily linear spectro-temporal filters, by others to respond to conjunctions of important sound features, or even to encode perceptual concepts such as “auditory objects.” Whatever the exact mechanism is, many studies consistently report a substantial increase in the variability of the response patterns of cortical neurons to natural sounds. The generation of such variation may be the main contribution of auditory cortex to the coding of natural sounds.
Article
Taylor Follansbee, Mirela Iodi Carstens, and E. Carstens
Pain is defined as “An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage,” while itch can be defined as “an unpleasant sensation that evokes the desire to scratch.” These sensations are normally elicited by noxious or pruritic stimuli that excite peripheral sensory neurons connected to spinal circuits and ascending pathways involved in sensory discrimination, emotional aversiveness, and respective motor responses. Specialized molecular receptors expressed by cutaneous nerve endings transduce stimuli into action potentials conducted by C- and Aδ-fiber nociceptors and pruriceptors into the outer lamina of the dorsal horn of the spinal cord. Here, neurons selectively activated by nociceptors, or by convergent input from nociceptors, pruriceptors, and often mechanoreceptors, transmit signals to ascending spinothalamic and spinoparabrachial pathways. The spinal circuitry for itch requires interneurons expressing gastrin-releasing peptide and its receptor, while spinal pain circuitry involves other excitatory neuropeptides; both itch and pain are transmitted by ascending pathways that express the receptor for substance P. Spinal itch- and pain-transmitting circuitry is segmentally modulated by inhibitory interneurons expressing dynorphin, GABA, and glycine, which mediate the antinociceptive and antipruritic effects of noxious counterstimulation. Spinal circuits are also under descending modulation from the brainstem rostral ventromedial medulla. Opioids like morphine inhibit spinal pain-transmitting circuits segmentally and via descending inhibitory pathways, while having the opposite effect on itch. The supraspinal targets of ascending pain and itch pathways exhibit extensive overlap and include the somatosensory thalamus, parabrachial nucleus, amygdala, periaqueductal gray, and somatosensory, anterior cingulate, insular, and supplementary motor cortical areas.
Following tissue injury, enhanced pain is evoked near the injury (primary hyperalgesia) due to release of inflammatory mediators that sensitize nociceptors. Within a larger surrounding area of secondary hyperalgesia, innocuous mechanical stimuli elicit pain (allodynia) due to central sensitization of pain pathways. Pruriceptors can also become sensitized in pathophysiological conditions, such as dermatitis. Under chronic itch conditions, low-threshold tactile stimulation can elicit itch (alloknesis), presumably due to central sensitization of itch pathways, although this has not been extensively studied.
There is considerable overlap in pain- and itch-signaling pathways and it remains unclear how these sensations are discriminated. Specificity theory states that itch and pain are separate sensations with their own distinct pathways (“labeled lines”). Selectivity theory is similar but incorporates the observation that pruriceptive neurons are also excited by algogenic stimuli that inhibit spinal itch transmission. In contrast, intensity theory states that itch is signaled by low firing rates, and pain by high firing rates, in a common sensory pathway. Finally, the spatial contrast theory proposes that itch is elicited by focal activation of a few nociceptors while activation of more nociceptors over a larger area elicits pain. There is evidence supporting each theory, and it remains to be determined how the nervous system distinguishes between pain and itch.
Article
Alfredo Fontanini and Lindsey Czarnecki
The gustatory system has evolved to detect molecules dissolved into the saliva. It is responsible for the perception of taste and flavor, for mediating the interaction between perception and internal homoeostatic states, and for driving ingestive decisions. The widely recognized five basic taste categories (sweet, salty, bitter, sour, and umami) provide information about the nutritional or potentially harmful content in what is being consumed. Sweetness is typical of sugars that are carbohydrate dense; saltiness is the percept of ions which are necessary for physiological function and electrolytic homeostasis; bitterness is associated with alkaloids and other potential toxins; sourness is the percept of acidity signaling spoiling foods; and umami is the sensation associated with amino acids in protein-rich foods. In addition to taste, the act of eating also engages sensations of temperature, texture, and odor—the integration of all these sensations leads to the unitary percept of flavor. These same senses, and others such as vision and audition, are also engaged before an ingestive event. Sights, sounds, and smells can alert organisms to the presence of food as well as inform the organism as to the specifics of which taste(s) to expect. As such, the neurophysiology of taste is necessarily intertwined with that of other senses and with that of cognitive and homeostatic systems.
Article
Ruth I. Wood and Kathryn G. Wallin-Miller
Anabolic-androgenic steroids (AAS) are both performance-enhancing substances and drugs of abuse. Although AAS are banned in competitive sports, they are widely used by both elite and rank-and-file athletes. All AAS are derived from testosterone, the principle endogenous androgen produced by the testes of adult men. While AAS increase muscular strength and athletic performance, they also have serious consequences for health and behavior. AAS are implicated in maladaptive behavioral and cognitive changes such as increased risk-taking and altered decision-making. However, effects of AAS on cognition are not well understood. Studies of human AAS users are limited by an inability to control for pre-existing psychopathology and behavioral differences. Furthermore, in order to understand AAS effects on behavior, it is important to discover how AAS impact the brain. Animal models of AAS abuse parallel human studies to uncover effects on cognition, decision-making, and underlying neurobiological mechanisms. In operant discounting tests, rats treated with chronic high-dose testosterone are less sensitive to effort, punishment, and delay but are more sensitive to uncertainty. Likewise, they demonstrate impaired cognitive flexibility when tested for set-shifting and reversal learning. It appears that AAS induce many of these cognitive changes via effects on the mesocorticolimbic dopamine system, particularly through the dopamine D1- and D2-like receptors in subnuclei of the nucleus accumbens. AAS also have rewarding effects mediated by similar neural circuits. In preclinical studies, animals will voluntarily self-administer AAS. Human users may develop dependence. These findings highlight the vulnerability of brain circuits controlling cognition and reward to androgens at high doses.
Article
Judith M. Ford, Holly K. Hamilton, and Alison Boos
Auditory verbal hallucinations (AVH), also referred to as “hearing voices,” are vivid perceptions of speech that occur in the absence of any corresponding external stimulus but seem very real to the voice hearer. They are experienced by the majority of people with schizophrenia, less frequently in other psychiatric and neurological conditions, and are relatively rare in the general population. Because antipsychotic medications are not always successful in reducing the severity or frequency of AVH, a better understanding is needed of their neurobiological basis, which may ultimately lead to more precise treatment targets.
What voices say and how the voices sound, or their phenomenology, varies widely within and across groups of people who hear them. In help-seeking populations, such as people with schizophrenia, the voices tend to be threatening and menacing, typically spoken in a non-self-voice, often commenting and sometimes commanding the voice hearers to do things they would not otherwise do. In psychotic populations, voices differ from normal inner speech by being unbidden and unintended, co-opting the voice hearer’s attention. In healthy voice-hearing populations, voices are not typically distressing nor disabling, and are sometimes comforting and reassuring. Regardless of content and valence, voices tend to activate some speech and language areas of the brain. Efforts to silence these brain areas with neurostimulation have had mixed success in reducing the frequency and salience of voices. Progress with this treatment approach would likely benefit from more precise anatomical targets and more precisely dosed neurostimulation.
Neural mechanisms that may underpin the experience of voices are being actively investigated and include mechanisms enabling context-based predictions and distinctions between experiences coming from self and other. Both these mechanisms can be studied in non-human animal “models” and both can provide new anatomical targets for neurostimulation.
Article
Steven Holfinger, M. Melanie Lyons, Nitin Bhatt, and Ulysses Magalang
Obstructive sleep apnea is recognized as a heterogeneous disease presenting with varying underlying risk factors, phenotypes, and responses to therapy. This clinical variance is in part due to the complex pathophysiology of sleep apnea. While multiple anatomical issues can predispose to the development of sleep apnea, factors that control the airway musculature also contribute via different pathophysiologic mechanisms. As sleep apnea does not occur during wakefulness, the impact of sleep stages on respiration is of critical importance. Altogether, understanding sleep apnea pathophysiology helps to guide current treatment modalities and helps identify potential targets for future therapies.
Article
Divine C. Nwafor, Allison L. Brichacek, Sreeparna Chakraborty, Catheryne A. Gambill, Stanley A. Benkovic, and Candice M. Brown
The blood-brain barrier (BBB) is a dynamic structural interface between the brain and periphery that plays a critical function in maintaining cerebral homeostasis. Over the past two decades, technological advances have improved our understanding of the neuroimmune and neuroendocrine mechanisms that regulate a healthy BBB. The combination of biological sex, sex steroids, age, coupled with innate and adaptive immune components orchestrates the crosstalk between the BBB and the periphery. Likewise, the BBB also serves as a nexus within the hypothalamic-pituitary-adrenal (HPA) and gut-brain-microbiota axes. Compromised BBB integrity permits the entry of bioactive molecules, immune cells, microbes, and other components that migrate into the brain parenchyma and compromise neuronal function. A paramount understanding of the mechanisms that determine the bidirectional crosstalk between the BBB and immune and endocrine pathways has become increasingly important for implementation of therapeutic strategies to treat a number of neurological disorders that are significantly impacted by the BBB. Examples of these disorders include multiple sclerosis, Alzheimer’s disease, stroke, epilepsy, and traumatic brain injury.
Article
Ashlyn Swift-Gallant and S. Marc Breedlove
While prenatal sex hormones guide the development of sex-typical reproductive structures, they also act on the developing brain, resulting in sex differences in brain and behavior in animal models. Stemming from this literature is the prominent hypothesis that prenatal neuroendocrine factors underlie sex differences in human sexual orientation, to explain why most males have a preference for female sexual partners (gynephilia), whereas most females display a preference for male sexual partners (androphilia). Convergent evidence from experiments of nature and indirect markers of prenatal hormones strongly support a role for prenatal androgens in same-same sexual orientations in women, although this finding is specific to a subset of lesbians who are also gender nonconforming (“butch”). More gender-conforming lesbians (“femmes”) do not show evidence of increased prenatal androgens. The literature has been more mixed for male sexual orientation: some report evidence of low prenatal androgen exposure, while others report evidence of high androgen levels and many other studies find no support for a role of prenatal androgen exposure in the development of androphilia in males. Recent evidence suggests there may be subgroups of gay men who owe their sexual orientation to distinct biodevelopmental mechanisms, which could account for these mixed findings. Although this research is young, it is similar to findings from lesbian populations, because gay men who are more gender nonconforming, and report a preference for receptive anal sex, differ on markers of prenatal development from gay men who are more gender conforming and report a preference for insertive anal sex. This chapter concludes with future research avenues including assessing whether multiple biodevelopmental pathways underlie sexual orientation and whether neuroendocrine factors and other biological mechanisms (e.g., immunology, genetics) interact to promote a same-sex sexual orientation.
Article
Lily Yan, Laura Smale, and Antonio A. Nunez
Circadian rhythms are endogenous daily rhythms evident in behavior and physiology. In mammals, these rhythms are controlled by a hierarchical network of oscillators showing a coherent circadian coordination or coupling. The hypothalamic suprachiasmatic nucleus (SCN) sits on top of the hierarchy and coordinates the phase of oscillators in other brain regions and in peripheral organs, including endocrine glands. The phase of the SCN oscillator, in reference to the daily light-dark cycle, is identical across mammalian species regardless of whether they are most active during the day or night, that is, diurnal or nocturnal. However, the extra-SCN or peripheral oscillators are out of phase and are often reversed by 180° across diurnal and nocturnal mammals. In the endocrine system, with the notable exception of the pattern of pineal melatonin secretion, which features elevated levels at night regardless of the activity profile of the species, most endocrine rhythms show a 180° reversal when diurnal and nocturnal species are compared. There is also evidence of differences between nocturnal and diurnal species with respect to their rhythms in sensitivity or responsiveness to hormonal stimulation. One of the major unanswered questions in the field of comparative endocrinology relates to the mechanism responsible for the differential coupling in diurnal and nocturnal mammals of extra-SCN oscillators and overt circadian rhythms with the SCN oscillator and the light dark cycle. Viable hypotheses include species-specific switches from excitation to inhibition at key nodes between the SCN and its targets, the presence of extra-SCN signals that converge on SCN targets and reverse the outcome of SCN signals, and changes in oscillatory parameters between the oscillator of the SCN and those outside the SCN resulting in an anti-phase coupling among key oscillators.
Article
Allison E. Gaffey and Brandy S. Martinez
There are two main branches of the human stress response. The autonomic nervous system acts rapidly and is often referred to as our fight or flight response. The slow-acting arm of the stress response refers to the hypothalamic-pituitary-adrenal (HPA) axis, which triggers a hormone cascade resulting in the release of various hormones including cortisol. Healthy functioning of the HPA axis is tightly regulated by negative feedback, the endogenous self-regulatory mechanism of the system that terminates cortisol production. Alterations in HPA axis functioning are characterized by both hypo- and hypersecretion of cortisol in response to psychological stress and are typically associated with negative physical health outcomes as well as clinical pathology. What remains poorly understood is how HPA activity changes with age and the pathways through which these changes occur.
In addition to changes associated with the normative aging process, age-related changes in cortisol may also be driven by the cumulative effects of stress experienced across the life span (e.g., traumatic stress); stressors unique to later life (e.g., caring for an ailing loved one); or health problems. Although research examining how the HPA axis might change with age is inconsistent, there appears to be reasonable evidence to suggest that: (1) both stress-induced and diurnal cortisol output may increase with age, potentially beginning with changes in the cortisol awakening response, (2) variability in cortisol production increases with age, (3) diurnal (i.e., daily) cortisol rhythms are preserved in later life, and (4) age-related differences in cortisol may be more distinct in men than in women. However, it remains unknown whether these changes in older adults’ physiology reflect maladaptive functioning of the HPA axis or interact with other health concerns to negatively affect overall psychophysiological health. Further research is needed to disentangle the interplay between aging and HPA axis functioning to better understand what alterations are associated with the normative aging process, when they occur, and how they influence longevity.
Article
Elisabetta Tolla, Jonathan H. Pérez, Ian C. Dunn, Simone L. Meddle, and Tyler J. Stevenson
Neuroendocrine mechanisms control the seasonal reproduction in birds and mammals. Seasonal reproduction is ubiquitous across vertebrate and invertebrate species, and its timing is extremely crucial in order to maximize offspring survival. The hypothalamus is the key brain region that integrates environmental cues. An endogenous circannual timer with oscillations that approximate one year is also localized in the hypothalamus. Successful timing of reproduction involves the combination of endogenous internal timers that are entrained by local environmental cues. Photoperiod, or the annual change in day length, is the primary cue most temperate animals use to predict future environmental conditions. Birds are able to detect light through photoreceptors located in the medio-basal hypothalamus. These photoreceptors are localized in neuroendocrine regions and regulate the key reproductive neuropeptide gonadotropin-releasing hormone (GnRH). In mammals, retinal photoreceptors transduce light information the suprachiasmatic nucleus in the hypothalamus, which then modulates the nocturnal duration of melatonin. Melatonin in mammals is crucial, as it regulates the neuroendocrine release of GnRH and downstream transitions across seasonal reproductive states. The tanycyte cells lining the third ventricle (3rdV) of the hypothalamus are the critical node for the integration of internal (i.e., circannual timing) and external (e.g., photoperiod) information necessary for the regulation of seasonal reproduction.
Article
Steven Kinsey, Olivia Vanegas, Kristen Trexler, Floyd Steele, and Matthew Eckard
The stress response evolved as a series of neural and endocrine mechanisms that protect the host organism from threats to homeostasis. Repeated use of psychotropic drugs can lead to the development of tolerance (i.e., decreased drug activity at a given dose) and drug dependence, as indicated by withdrawal syndromes following drug abstinence. Drug withdrawal is often overtly stressful, although acute drug exposure may also represent a threat to homeostasis. This article explores the neuroendocrine effects of drugs of abuse and some of the ways in which stress and appetitive mechanisms interact.
Article
Gretchen N. Neigh, Mandakh Bekhbat, and Sydney A. Rowson
Bidirectional interactions between the immune system and central nervous system have been acknowledged for centuries. Over the past 100 years, pioneering studies in both animal models and humans have delineated the behavioral consequences of neuroimmune activation, including the different facets of sickness behavior. Rodent studies have uncovered multiple neural pathways and mechanisms that mediate anorexia, fever, sleep alterations, and social withdrawal following immune activation. Furthermore, work conducted in human patients receiving interferon treatment has elucidated some of the mechanisms underlying immune-induced behavioral changes such as malaise, depressive symptoms, and cognitive deficits.
These findings have provided the foundation for development of treatment interventions for conditions in which dysfunction of immune-brain interactions leads to behavioral pathology. Rodent models of neuroimmune activation frequently utilize endotoxins and cytokines to directly stimulate the immune system. In the absence of pathogen-induced inflammation, a variety of environmental stressors, including psychosocial stressors, also lead to neuroimmune alterations and concurrent behavioral changes. These behavioral alterations can be assessed using a battery of behavioral paradigms while distinguishing acute sickness behavior from the type of behavioral outcome being assessed. Animal studies have also been useful in delineating the role of microglia, the neuroendocrine system, neurotransmitters, and neurotrophins in mediating the behavioral implications of altered neuroimmune activity. Furthermore, the timing and duration of neuroimmune challenge as well as the sex of the organism can impact the behavioral manifestations of altered neuroimmune activity. Finally, neuroimmune modulation through pharmacological or psychosocial approaches has potential for modulating behavior.
Article
Jürgen Sandkühler
Much progress has been made in unraveling the mechanisms that underlie the transition from acute to chronic pain. Traditional beliefs are being replaced by novel, more powerful concepts that consider the mutual interplay of neuronal and non-neuronal cells in the nervous system during the pathogenesis of chronic pain. The new focus is on the role of neuroinflammation for neuroplasticity in nociceptive pathways and for the generation, amplification, and mislocation of pain. The latest insights are reviewed here and provide a basis for understanding the interdependence of chronic pain and its comorbidities. The new concepts will guide the search for future therapies to prevent and reverse chronic pain.
Long-term changes in the properties and functions of nerve cells, including changes in synaptic strength, membrane excitability, and the effects of inhibitory neurotransmitters, can result from a wide variety of conditions. In the nociceptive system, painful stimuli, peripheral inflammation, nerve injuries, the use of or withdrawal from opioids—all can lead to enhanced pain sensitivity, to the generation of pain, and/or to the spread of pain to unaffected sites of the body. Non-neuronal cells, especially microglia and astrocytes, contribute to changes in nociceptive processing. Recent studies revealed not only that glial cells support neuroplasticity but also that their activation can trigger long-term changes in the nociceptive system.
Article
Kalynn Schulz, Marcia Chavez, and Arthur Castaneda
Nicotinic acetylcholine receptors (nAChRs) are present throughout the central nervous system and involved in a variety of physiological and behavioral functions. Nicotinic acetylcholine receptors are receptive to the presence of nicotine and acetylcholine and can be modulated through a variety of agonist and antagonist actions. These receptors are complex in their structure and function, and they are composed of multiple α and β subunits. Many affective disorders have etiological links with developmental exposure to the nAChR agonist nicotine. Given that abnormalities in nAChRs are associated with affective disorders such as depression and anxiety, pharmacological interventions targeting nAChRs may have significant therapeutic benefits.
Article
Edgar T. Walters
Chronic pain lasting months or longer is very common, poorly treated, and sometimes devastating. Nociceptors are sensory neurons that usually are silent unless activated by tissue damage or inflammation. In humans their peripheral activation evokes conscious pain, and their spontaneous activity is highly correlated with spontaneous pain. Persistently hyperactive nociceptors mediate increased responses to normally painful stimuli (hyperalgesia) in chronic conditions and promote the sensitization of central pain pathways that allows low-threshold mechanoreceptors to elicit painful responses to innocuous stimuli (allodynia). Investigations of rodent models of neuropathic pain and hyperalgesic priming have revealed many alterations in nociceptors and associated cells that are implicated in the development and maintenance of chronic pain. These include chronic nociceptor hyperexcitability and spontaneous activity, sprouting, synaptic plasticity, changes in intracellular signaling, and modified responses to opioids, along with alterations in the expression and translation of thousands of genes in nociceptors and closely linked cells.
Article
Kenway Louie and Paul W. Glimcher
A core question in systems and computational neuroscience is how the brain represents information. Identifying principles of information coding in neural circuits is critical to understanding brain organization and function in sensory, motor, and cognitive neuroscience. This provides a conceptual bridge between the underlying biophysical mechanisms and the ultimate behavioral goals of the organism. Central to this framework is the question of computation: what are the relevant representations of input and output, and what algorithms govern the input-output transformation? Remarkably, evidence suggests that certain canonical computations exist across different circuits, brain regions, and species. Such computations are implemented by different biophysical and network mechanisms, indicating that the unifying target of conservation is the algorithmic form of information processing rather than the specific biological implementation.
A prime candidate to serve as a canonical computation is divisive normalization, which scales the activity of a given neuron by the activity of a larger neuronal pool. This nonlinear transformation introduces an intrinsic contextual modulation into information coding, such that the selective response of a neuron to features of the input is scaled by other input characteristics. This contextual modulation allows the normalization model to capture a wide array of neural and behavioral phenomena not captured by simpler linear models of information processing. The generality and flexibility of the normalization model arises from the normalization pool, which allows different inputs to directly drive and suppress a given neuron, effectively separating information that drives excitation and contextual modulation. Originally proposed to describe responses in early visual cortex, normalization has been widely documented in different brain regions, hierarchical levels, and modalities of sensory processing; furthermore, recent work shows that the normalization extends to cognitive processes such as attention, multisensory integration, and decision making. This ubiquity reinforces the canonical nature of the normalization computation and highlights the importance of an algorithmic framework in linking biological mechanism and behavior.