1-2 of 2 Results  for:

  • Computational Neuroscience x
  • Cognitive Neuroscience x
Clear all

Article

Tim C. Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte

The goal of computational neuroscience is to find mechanistic explanations of how the nervous system processes information to give rise to cognitive function and behavior. At the heart of the field are its models, that is, mathematical and computational descriptions of the system being studied, which map sensory stimuli to neural responses and/or neural to behavioral responses. These models range from simple to complex. Recently, deep neural networks (DNNs) have come to dominate several domains of artificial intelligence (AI). As the term “neural network” suggests, these models are inspired by biological brains. However, current DNNs neglect many details of biological neural networks. These simplifications contribute to their computational efficiency, enabling them to perform complex feats of intelligence, ranging from perceptual (e.g., visual object and auditory speech recognition) to cognitive tasks (e.g., machine translation), and on to motor control (e.g., playing computer games or controlling a robot arm). In addition to their ability to model complex intelligent behaviors, DNNs excel at predicting neural responses to novel sensory stimuli with accuracies well beyond any other currently available model type. DNNs can have millions of parameters, which are required to capture the domain knowledge needed for successful task performance. Contrary to the intuition that this renders them into impenetrable black boxes, the computational properties of the network units are the result of four directly manipulable elements: input statistics, network structure, functional objective, and learning algorithm. With full access to the activity and connectivity of all units, advanced visualization techniques, and analytic tools to map network representations to neural data, DNNs represent a powerful framework for building task-performing models and will drive substantial insights in computational neuroscience.

Article

Anitha Pasupathy, Yasmine El-Shamayleh, and Dina V. Popovkina

Humans and other primates rely on vision. Our visual system endows us with the ability to perceive, recognize, and manipulate objects, to avoid obstacles and dangers, to choose foods appropriate for consumption, to read text, and to interpret facial expressions in social interactions. To support these visual functions, the primate brain captures a high-resolution image of the world in the retina and, through a series of intricate operations in the cerebral cortex, transforms this representation into a percept that reflects the physical characteristics of objects and surfaces in the environment. To construct a reliable and informative percept, the visual system discounts the influence of extraneous factors such as illumination, occlusions, and viewing conditions. This perceptual “invariance” can be thought of as the brain’s solution to an inverse inference problem in which the physical factors that gave rise to the retinal image are estimated. While the processes of perception and recognition seem fast and effortless, it is a challenging computational problem that involves a substantial proportion of the primate brain.