1-10 of 13 Results  for:

  • Computational Neuroscience x
Clear all

Article

Visual Perception in the Human Brain: How the Brain Perceives and Understands Real-World Scenes  

Clemens G. Bartnik and Iris I. A. Groen

How humans perceive and understand real-world scenes is a long-standing question in neuroscience, cognitive psychology, and artificial intelligence. Initially, it was thought that scenes are constructed and represented by their component objects. An alternative view proposed that scene perception starts by extracting global features (e.g., spatial layout) first and individual objects in later stages. A third framework focuses on how the brain not only represents objects and layout but how this information combines to allow determining possibilities for (inter)action that the environment offers us. The discovery of scene-selective regions in the human visual system sparked interest in how scenes are represented in the brain. Experiments using functional magnetic resonance imaging show that multiple types of information are encoded in the scene-selective regions, while electroencephalography and magnetoencephalography measurements demonstrate links between the rapid extraction of different scene features and scene perception behavior. Computational models such as deep neural networks offer further insight by how training networks on different scene recognition tasks results in the computation of diagnostic features that can then be tested for their ability to predict activity in human brains when perceiving a scene. Collectively, these findings suggest that the brain flexibly and rapidly extracts a variety of information from scenes using a distributed network of brain regions.

Article

Predictive Coding Theories of Cortical Function  

Linxing Preston Jiang and Rajesh P.N. Rao

Predictive coding is a unifying framework for understanding perception, action, and neocortical organization. In predictive coding, different areas of the neocortex implement a hierarchical generative model of the world that is learned from sensory inputs. Cortical circuits are hypothesized to perform Bayesian inference based on this generative model. Specifically, the Rao–Ballard hierarchical predictive coding model assumes that the top-down feedback connections from higher to lower order cortical areas convey predictions of lower-level activities. The bottom-up, feedforward connections in turn convey the errors between top-down predictions and actual activities. These errors are used to correct current estimates of the state of the world and generate new predictions. Through the objective of minimizing prediction errors, predictive coding provides a functional explanation for a wide range of neural responses and many aspects of brain organization.

Article

Models of Decision-Making Over Time  

Paul Cisek and David Thura

Making a good decision often takes time, and in general, taking more time improves the chances of making the right choice. During the past several decades, the process of making decisions in time has been described through a class of models in which sensory evidence about choices is accumulated until the total evidence for one of the choices reaches some threshold, at which point commitment is made and movement initiated. Thus, if sensory evidence is weak (and noise in the signal increases the probability of an error), then it takes longer to reach that threshold than if sensory evidence is strong (thus helping filter out the noise). Crucially, the setting of the threshold can be increased to emphasize accuracy or lowered to emphasize speed. Such accumulation-to-bound models have been highly successful in explaining behavior in a very wide range of tasks, from perceptual discrimination to deliberative thinking, and in providing a mechanistic explanation for the observation that neural activity during decision-making tends to build up over time. However, like any model, they have limitations, and recent studies have motivated several important modifications to their basic assumptions. In particular, recent theoretical and experimental work suggests that the process of accumulation favors novel evidence, that the threshold decrease over time, and that the result yields improved decision-making in real, natural situations.

Article

Confidence in Decision-Making  

Megan A.K. Peters

The human brain processes noisy information to help make adaptive choices under uncertainty. Accompanying these decisions about incoming evidence is a sense of confidence: a feeling about whether a decision is correct. Confidence typically covaries with the accuracy of decisions, in that higher confidence is associated with higher decisional accuracy. In the laboratory, decision confidence is typically measured by asking participants to make judgments about stimuli or information (type 1 judgments) and then to rate their confidence on a rating scale or by engaging in wagering (type 2 judgments). The correspondence between confidence and accuracy can be quantified in a number of ways, some based on probability theory and signal detection theory. But decision confidence does not always reflect only the probability that a decision is correct; confidence can also reflect many other factors, including other estimates of noise, evidence magnitude, nearby decisions, decision time, and motor movements. Confidence is thought to be computed by a number of brain regions, most notably areas in the prefrontal cortex. And, once computed, confidence can be used to drive other behaviors, such as learning rates or social interaction.

Article

High-Density Electrophysiological Recordings to Assess the Dynamic Properties of Attention  

Corentin Gaillard and Suliann Ben Hamed

The brain has limited processing capacities. Attention selection processes are continuously shaping humans’ world perception. Understanding the mechanisms underlying such covert cognitive processes requires the combination of psychophysical and electrophysiological investigation methods. This combination allows researchers to describe how individual neurons and neuronal populations encode attentional function. Direct access to neuronal information through innovative electrophysiological approaches, additionally, allows the tracking of covert attention in real time. These converging approaches capture a comprehensive view of attentional function.

Article

What Is a Neuronal Ensemble?  

Luis Carrillo-Reid and Rafael Yuste

Despite over a century of neuroscience research, the nature of the neural code, that is, how neuronal activity underlies motor, sensory, and cognitive functions, remains elusive. Understanding the causal relation between neuronal activity and behavior requires a new conceptual paradigm that considers groups of neurons, instead of individual neurons, as the functional building blocks of the brain. These “neuronal ensembles,” defined as groups of neurons with coordinated activity that are reliably recalled by sensory stimuli, motor programs, or cognitive states, could be basic modular functional units of neural circuits. This hypothesis is consistent with past and present neuroscience results and could provide a broader framework to more effectively decipher the neural code in normal brains and provide new insights into how abnormal brain activity could lead to mental and neurological disease.

Article

Normalization Principles in Computational Neuroscience  

Kenway Louie and Paul W. Glimcher

A core question in systems and computational neuroscience is how the brain represents information. Identifying principles of information coding in neural circuits is critical to understanding brain organization and function in sensory, motor, and cognitive neuroscience. This provides a conceptual bridge between the underlying biophysical mechanisms and the ultimate behavioral goals of the organism. Central to this framework is the question of computation: what are the relevant representations of input and output, and what algorithms govern the input-output transformation? Remarkably, evidence suggests that certain canonical computations exist across different circuits, brain regions, and species. Such computations are implemented by different biophysical and network mechanisms, indicating that the unifying target of conservation is the algorithmic form of information processing rather than the specific biological implementation. A prime candidate to serve as a canonical computation is divisive normalization, which scales the activity of a given neuron by the activity of a larger neuronal pool. This nonlinear transformation introduces an intrinsic contextual modulation into information coding, such that the selective response of a neuron to features of the input is scaled by other input characteristics. This contextual modulation allows the normalization model to capture a wide array of neural and behavioral phenomena not captured by simpler linear models of information processing. The generality and flexibility of the normalization model arises from the normalization pool, which allows different inputs to directly drive and suppress a given neuron, effectively separating information that drives excitation and contextual modulation. Originally proposed to describe responses in early visual cortex, normalization has been widely documented in different brain regions, hierarchical levels, and modalities of sensory processing; furthermore, recent work shows that the normalization extends to cognitive processes such as attention, multisensory integration, and decision making. This ubiquity reinforces the canonical nature of the normalization computation and highlights the importance of an algorithmic framework in linking biological mechanism and behavior.

Article

Deep Neural Networks in Computational Neuroscience  

Tim C. Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte

The goal of computational neuroscience is to find mechanistic explanations of how the nervous system processes information to give rise to cognitive function and behavior. At the heart of the field are its models, that is, mathematical and computational descriptions of the system being studied, which map sensory stimuli to neural responses and/or neural to behavioral responses. These models range from simple to complex. Recently, deep neural networks (DNNs) have come to dominate several domains of artificial intelligence (AI). As the term “neural network” suggests, these models are inspired by biological brains. However, current DNNs neglect many details of biological neural networks. These simplifications contribute to their computational efficiency, enabling them to perform complex feats of intelligence, ranging from perceptual (e.g., visual object and auditory speech recognition) to cognitive tasks (e.g., machine translation), and on to motor control (e.g., playing computer games or controlling a robot arm). In addition to their ability to model complex intelligent behaviors, DNNs excel at predicting neural responses to novel sensory stimuli with accuracies well beyond any other currently available model type. DNNs can have millions of parameters, which are required to capture the domain knowledge needed for successful task performance. Contrary to the intuition that this renders them into impenetrable black boxes, the computational properties of the network units are the result of four directly manipulable elements: input statistics, network structure, functional objective, and learning algorithm. With full access to the activity and connectivity of all units, advanced visualization techniques, and analytic tools to map network representations to neural data, DNNs represent a powerful framework for building task-performing models and will drive substantial insights in computational neuroscience.

Article

Physiology of Color Vision in Primates  

Robert Shapley

Color perception in macaque monkeys and humans depends on the visually evoked activity in three cone photoreceptors and on neuronal post-processing of cone signals. Neuronal post-processing of cone signals occurs in two stages in the pathway from retina to the primary visual cortex. The first stage, in in P (midget) ganglion cells in the retina, is a single-opponent subtractive comparison of the cone signals. The single-opponent computation is then sent to neurons in the Parvocellular layers of the Lateral Geniculate Nucleus (LGN), the main visual nucleus of the thalamus. The second stage of processing of color-related signals is in the primary visual cortex, V1, where multiple comparisons of the single-opponent signals are made. The diversity of neuronal interactions in V1cortex causes the cortical color cells to be subdivided into classes of single-opponent cells and double-opponent cells. Double-opponent cells have visual properties that can be used to explain most of the phenomenology of color perception of surface colors; they respond best to color edges and spatial patterns of color. Single opponent cells, in retina, LGN, and V1, respond to color modulation over their receptive fields and respond best to color modulation over a large area in the visual field.

Article

Network Analyses and Nervous System Disorders  

John D. Medaglia and Danielle S. Bassett

Network analyses in nervous system disorders involve constructing and analyzing anatomical and functional brain networks from neuroimaging data to describe and predict the clinical syndromes that result from neuropathology. A network view of neurological disease and clinical syndromes facilitates accurate quantitative characterizations and mathematical models of complex nervous system disorders with relatively simple tools drawn from the field of graph theory. Networks are predominantly constructed from in vivo data acquired using physiological and neuroimaging techniques at the macroscale of nervous system organization. Studies support the emerging view that neuropsychiatric and neurological disorders result from pathological processes that disrupt the brain’s economically wired small-world organization. The lens of network science offers theoretical insight into progressive neurodegeneration, neuropsychological dysfunction, and potential anatomical targets for interventions ranging from pharmacological agents to brain stimulation.