1-10 of 58 Results  for:

  • Sensory Systems x
Clear all

Article

A first step in analyzing complex systems is a classification of component elements. This applies to retinal organization as well as to other circuit components in the visual system. There is great variety in the types of retinal ganglion cells and the targets of their axonal projections. Thus, a prerequisite to any deep understanding of the early visual system is developing a proper classification of its elements. How many distinct classes of retinal ganglion cells are there? Can the main classes be broken down into subclasses? What sort of functional correlates can be established for each class? Can homologous relationships between apparently similar classes between species be established? Can a common nomenclature based on homologous cell and circuit classes be developed?

Article

Megan A.K. Peters

The human brain processes noisy information to help make adaptive choices under uncertainty. Accompanying these decisions about incoming evidence is a sense of confidence: a feeling about whether a decision is correct. Confidence typically covaries with the accuracy of decisions, in that higher confidence is associated with higher decisional accuracy. In the laboratory, decision confidence is typically measured by asking participants to make judgments about stimuli or information (type 1 judgments) and then to rate their confidence on a rating scale or by engaging in wagering (type 2 judgments). The correspondence between confidence and accuracy can be quantified in a number of ways, some based on probability theory and signal detection theory. But decision confidence does not always reflect only the probability that a decision is correct; confidence can also reflect many other factors, including other estimates of noise, evidence magnitude, nearby decisions, decision time, and motor movements. Confidence is thought to be computed by a number of brain regions, most notably areas in the prefrontal cortex. And, once computed, confidence can be used to drive other behaviors, such as learning rates or social interaction.

Article

The brain has limited processing capacities. Attention selection processes are continuously shaping humans’ world perception. Understanding the mechanisms underlying such covert cognitive processes requires the combination of psychophysical and electrophysiological investigation methods. This combination allows researchers to describe how individual neurons and neuronal populations encode attentional function. Direct access to neuronal information through innovative electrophysiological approaches, additionally, allows the tracking of covert attention in real time. These converging approaches capture a comprehensive view of attentional function.

Article

Natalie Hempel de Ibarra and Misha Vorobyev

Color plays an important role in insect life—many insects forage on colorful flowers and/or have colorful bodies. Accordingly, most insects have multiple spectral types of photoreceptors in their eyes, which gives them the capability to see colors. However, insects cannot perceive colors in the same way as human beings do because their eyes and brains differ substantially. An insect was the first nonhuman animal whose ability to discriminate colors has been demonstrated - in the beginning of the 20th century, von Frisch showed that the honeybee, Apis mellifera, can discriminate blue from any shade of gray. This method, called the gray-card experiment, is an accepted “gold standard” for the proof of color vision in animals. Insect species differ in the combinations of photoreceptors in their eyes, with peak sensitivities in ultraviolet (UV) and/or blue, green, and sometimes red parts of the spectrum. The number of photoreceptor spectral types can be as little as one or two, as in the grasshopper Phlaeoba and the beetle Tribolium, and as many as 10 and more in some species of butterflies and dragonflies. However, not all spectral receptor types are necessarily used for color vison. For example, the butterfly Papilio xuthus uses only four of its eight photoreceptors for color vision. Some insects have separate channels for processing chromatic and achromatic (lightness) information. In the honeybee, the achromatic channel has high spatial resolution and is mediated only by long-wavelength sensitive, or “green,” photoreceptors alone, whereas the spatial resolution of chromatic vision is low and mediated by all three spectral types of photoreceptors. Whether other insects have a similar separation of chromatic and achromatic vision remains uncertain. In contrast to vertebrates, insects do not use distinct sets of photoreceptors for nocturnal vision, and some nocturnal insects can see color at night. Insect photoreceptors are inherently polarization sensitive because of their microvillar organization. Therefore, some insects cannot discriminate changes in polarization of light from changes in its spectral composition. However, many insects sacrifice polarization sensitivity to retain reliable color vision. For example, in the honeybee, polarization sensitivity is eliminated by twisting the rhabdom in most parts of its compound eye except for the dorsal rim area that is specialized in polarization vision. Insects experience color constancy and color-contrast phenomena. Although in humans these aspects of vision are often attributed to cortical processing of color, simple models based on photoreceptor adaptation may explain color constancy and color induction in insects. Color discriminations can be evaluated using a simple model, which assumes that it is limited by photoreceptor noise. This model can help to predict discrimination of colors that are ecologically relevant, such as flower colors for pollinating insects. However, despite the fact that many insects forage on flowers, there is no evidence that insect pollinator vision coevolved with flower colors. The diverse color vision in butterflies appears to adaptively facilitate the recognition of their wing colors.

Article

Steven Holfinger, M. Melanie Lyons, Nitin Bhatt, and Ulysses Magalang

Obstructive sleep apnea is recognized as a heterogeneous disease presenting with varying underlying risk factors, phenotypes, and responses to therapy. This clinical variance is in part due to the complex pathophysiology of sleep apnea. While multiple anatomical issues can predispose to the development of sleep apnea, factors that control the airway musculature also contribute via different pathophysiologic mechanisms. As sleep apnea does not occur during wakefulness, the impact of sleep stages on respiration is of critical importance. Altogether, understanding sleep apnea pathophysiology helps to guide current treatment modalities and helps identify potential targets for future therapies.

Article

Edgar T. Walters

Chronic pain lasting months or longer is very common, poorly treated, and sometimes devastating. Nociceptors are sensory neurons that usually are silent unless activated by tissue damage or inflammation. In humans their peripheral activation evokes conscious pain, and their spontaneous activity is highly correlated with spontaneous pain. Persistently hyperactive nociceptors mediate increased responses to normally painful stimuli (hyperalgesia) in chronic conditions and promote the sensitization of central pain pathways that allows low-threshold mechanoreceptors to elicit painful responses to innocuous stimuli (allodynia). Investigations of rodent models of neuropathic pain and hyperalgesic priming have revealed many alterations in nociceptors and associated cells that are implicated in the development and maintenance of chronic pain. These include chronic nociceptor hyperexcitability and spontaneous activity, sprouting, synaptic plasticity, changes in intracellular signaling, and modified responses to opioids, along with alterations in the expression and translation of thousands of genes in nociceptors and closely linked cells.

Article

Early mammals were small with little neocortex that included a somatosensory system with a mediolateral strip of primary somatosensory cortex and three or four adjoining somatosensory fields. As early mammals radiated out and adapted to local environments, their somatosensory systems adjusted and became specialized in many ways. Most of these specializations were most obvious as disproportionally enlarged representations of important sensory surfaces of the skin in primary somatosensory cortex. These enlarged representations included those of the bill of the duckbilled platypus, the nose of the star-nosed mole, the teeth and tongue of monkeys, the glabrous hand of raccoons, the wing of bats, and the tactile tail of some monkeys. These and other specializations enhanced the ability of these mammals to adapt to their environments and to precisely evaluate relevant sensory events and make appropriate behavioral adjustments.

Article

Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.

Article

Hiroshi Ueda

Chemoreception is the physiological capacity whereby organisms detect the varied external and internal chemical information required for survival and is the most primitive sensory process. Fish living in water have respiratory, gustatory, and olfactory chemosensory systems that detect water-soluble chemical cues. Respiratory chemoreception mainly in the gills detects changes in the levels of three respiratory gases: oxygen (O2), carbon dioxide (CO2), and ammonia (NH3). Gustatory chemoreception (gustation), which involves several taste receptor genes, is primarily involved in the tasting of foods. Olfactory chemoreception (olfaction), which involves between 15 and 150 olfactory receptor genes, is involved in a variety of important biological functions such as procuring foods, recognizing hazards (predators, contaminants, and toxic and alarm substances), discriminating species (individual, kin, and conspecific), controlling social behavior (dominance hierarchies, symbiotic behavior, territorial behavior, and schooling behavior), and reproductive and migratory behavior (mating, search for spawning site, imprinting, and homing). The olfactory functions are primarily controlled by hormones secreted from various endocrine glands that are the key mediators and integrators of external and internal information in organisms. Conversely, olfactory stimuli cause changes in hormone conditions. One good example is the amazing olfactory abilities of salmon. They can memorize information related to their natal stream odors during downstream migration in juveniles so that, after they travel thousands of kilometers in the ocean over many years during feeding migration, they are able to use their homing abilities to migrate precisely to their natal stream for reproduction in adults. Olfactory memory formation and retrieval of natal stream odors in salmon, which are primarily controlled by the brain–pituitary–thyroid hormones and brain–pituitary–gonad hormones, respectively, are essential to imprinting and homing migration. Salmon olfactory systems can discriminate seasonally and yearly stable compositions of dissolved amino acids in their natal streams produced by biofilms in the riverbed. Ocean and freshwater ecosystems may have been affected by climate change-related CO2-induced acidification that impairs olfactory-mediated neural and behavioral responses in fish.

Article

Taylor Follansbee, Mirela Iodi Carstens, and E. Carstens

Pain is defined as “An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage,” while itch can be defined as “an unpleasant sensation that evokes the desire to scratch.” These sensations are normally elicited by noxious or pruritic stimuli that excite peripheral sensory neurons connected to spinal circuits and ascending pathways involved in sensory discrimination, emotional aversiveness, and respective motor responses. Specialized molecular receptors expressed by cutaneous nerve endings transduce stimuli into action potentials conducted by C- and Aδ-fiber nociceptors and pruriceptors into the outer lamina of the dorsal horn of the spinal cord. Here, neurons selectively activated by nociceptors, or by convergent input from nociceptors, pruriceptors, and often mechanoreceptors, transmit signals to ascending spinothalamic and spinoparabrachial pathways. The spinal circuitry for itch requires interneurons expressing gastrin-releasing peptide and its receptor, while spinal pain circuitry involves other excitatory neuropeptides; both itch and pain are transmitted by ascending pathways that express the receptor for substance P. Spinal itch- and pain-transmitting circuitry is segmentally modulated by inhibitory interneurons expressing dynorphin, GABA, and glycine, which mediate the antinociceptive and antipruritic effects of noxious counterstimulation. Spinal circuits are also under descending modulation from the brainstem rostral ventromedial medulla. Opioids like morphine inhibit spinal pain-transmitting circuits segmentally and via descending inhibitory pathways, while having the opposite effect on itch. The supraspinal targets of ascending pain and itch pathways exhibit extensive overlap and include the somatosensory thalamus, parabrachial nucleus, amygdala, periaqueductal gray, and somatosensory, anterior cingulate, insular, and supplementary motor cortical areas. Following tissue injury, enhanced pain is evoked near the injury (primary hyperalgesia) due to release of inflammatory mediators that sensitize nociceptors. Within a larger surrounding area of secondary hyperalgesia, innocuous mechanical stimuli elicit pain (allodynia) due to central sensitization of pain pathways. Pruriceptors can also become sensitized in pathophysiological conditions, such as dermatitis. Under chronic itch conditions, low-threshold tactile stimulation can elicit itch (alloknesis), presumably due to central sensitization of itch pathways, although this has not been extensively studied. There is considerable overlap in pain- and itch-signaling pathways and it remains unclear how these sensations are discriminated. Specificity theory states that itch and pain are separate sensations with their own distinct pathways (“labeled lines”). Selectivity theory is similar but incorporates the observation that pruriceptive neurons are also excited by algogenic stimuli that inhibit spinal itch transmission. In contrast, intensity theory states that itch is signaled by low firing rates, and pain by high firing rates, in a common sensory pathway. Finally, the spatial contrast theory proposes that itch is elicited by focal activation of a few nociceptors while activation of more nociceptors over a larger area elicits pain. There is evidence supporting each theory, and it remains to be determined how the nervous system distinguishes between pain and itch.