41-51 of 51 Results  for:

  • Neuroendocrine and Autonomic Systems x
Clear all


Role of Sex Hormones on Pain  

Dayna L. Averitt, Rebecca S. Hornung, and Anne Z. Murphy

The modulatory influence of sex hormones on acute pain, chronic pain disorders, and pain management has been reported for over seven decades. The effect of hormones on pain is clearly evidenced by the multitude of chronic pain disorders that are more common in women, such as headache and migraine, temporomandibular joint disorder, irritable bowel syndrome, chronic pelvic pain, fibromyalgia, rheumatoid arthritis, and osteoarthritis. Several of these pain disorders also fluctuate in pain intensity over the menstrual cycle, including headache and migraine and temporomandibular joint disorder. The sex steroid hormones (estrogen, progesterone, and testosterone) as well as some peptide hormones (prolactin, oxytocin, and vasopressin) have been linked to pain by both clinical and preclinical research. Progesterone and testosterone are widely accepted as having protective effects against pain, while the literature on estrogen reports both exacerbation and attenuation of pain. Prolactin is reported to trigger pain, while oxytocin and vasopressin have analgesic properties in both sexes. Only in the last two decades have neuroscientists begun to unravel the complex anatomical and molecular mechanisms underlying the direct effects of sex hormones and mechanisms have been reported in both the central and peripheral nervous systems. Mechanisms include directly or indirectly targeting receptors and ion channels on sensory neurons, activating pain excitatory or pain inhibitory centers in the brain, and reducing inflammatory mediators. Despite recent progress, there remains significant controversy and challenges in the field and the seemingly pleiotropic role estrogen plays on pain remains ambiguous. Current knowledge of the effects of sex hormones on pain has led to the burgeoning of gender-based medicine, and gaining further insight will lead to much needed improvement in pain management in women.


Sex-Specific Regulation of Peripheral and Central Immune Responses  

Sabra L. Klein and Jaclyn M. Schwarz

Sex is a biological variable that affects immune responses to both self and foreign antigens (e.g., microbial infections) in the central nervous system (CNS) as well as in peripheral organs. The sex of an individual is defined by the differential determination of the sex chromosomes, the organization of the reproductive organs, and the subsequent sex steroid hormone levels in males and females. Sex is distinct from gender, which includes self-identification as being a male or female as well as behaviors and activities that are determined by society or culture in humans. Male and female differences in immunological responses may be influenced by both sex and gender, with sex contributing to the physiological and anatomical differences that influence exposure, recognition, clearance, and even transmission of microbes in males and females. By contrast, gender may reflect behaviors that influence exposure to microbes, access to health care, or health-seeking behaviors that indirectly affect the course of infection in males and females. Though both sex and gender influence the immune response, the focus of this article is the biological factors that influence immunological differences between the sexes in both the CNS and peripheral tissues to alter the course of diseases across the life span.


Sexual Behavior in Females from a Neuroendocrine Perspective  

Donald Pfaff

Understanding of the brain mechanisms regulating reproductive behaviors in female laboratory animals has been aided greatly by our knowledge of estrogen receptors in the brain. Hypothalamic neurons that express the gene for estrogen receptor-alpha regulate activity in the neural circuit for the simplest female reproductive response, lordosis behavior. In turn, many of the neurotransmitter inputs to the critical hypothalamic neurons have been studied using electrophysiological and neurochemical techniques. The upshot of all of these studies is that lordosis behavior presents the best understood set of mechanisms for any mammalian behavior.


Sexual Behavior in Males From a Neuroendocrine Perspective  

Jacques Balthazart and Gregory F. Ball

It is well established that testosterone from testicular origin plays a critical role in the activation of male sexual behavior in most, if not all, vertebrate species. These effects take place to a large extent in the preoptic area although other brain sites are obviously also implicated. In its target areas, testosterone is actively metabolized either into estrogenic and androgenic steroids that have specific behavioral effects or into inactive metabolites. These transformations either amplify the behavioral activity of testosterone or, alternatively, metabolism to an inactive compound dissipates any biological effect. Androgens and estrogens then bind to nuclear receptors that modulate the transcription of specific genes. This process is controlled by a variety of co-activators and co-repressors that, respectively, enhance or inhibit these transcriptional processes. In addition, recent work has shown that the production of estrogens by brain aromatase can be modulated within minutes by changes in neural activity and that these rapid changes in neuroestrogen production impact sexual behavior, in particular sexual motivation within the same time frame. Estrogens thus affect specific aspects of male sexual behavior in two different time frames via two types of mechanisms that are completely different. Multiple questions remain open concerning the cellular brain mechanisms that mediate testosterone action on male sexual behavior.


Steroids and Plasticity  

Alyssa L. Pedersen and Colin J. Saldanha

Given the profound influence of steroids on the organization and activation of the vertebrate central nervous system (CNS), it is perhaps not surprising that these molecules are involved in processes that restructure the cytoarchitecture of the brain. This includes processes such as neurogenesis and the connectivity of neural circuits. In the last 30 years or so, we have learned that the adult vertebrate brain is far from static; it responds to changes in androgens and estrogens, with dramatic alterations in structure and function. Some of these changes have been directly linked to behavior, including sex, social dominance, communication, and memory. Perhaps the most dramatic levels of neuroplasticity are observed in teleosts, where circulating and centrally derived steroids can affect several end points, including cell proliferation, migration, and behavior. Similarly, in passerine songbirds and mammals, testosterone and estradiol are important modulators of adult neuroplasticity, with documented effects on areas of the brain necessary for complex behaviors, including social communication, reproduction, and learning. Given that many of the cellular processes that underlie neuroplasticity are often energetically demanding and temporally protracted, it is somewhat surprising that steroids can affect physiological and behavioral end points quite rapidly. This includes recent demonstrations of extremely rapid effects of estradiol on synaptic neurotransmission and behavior in songbirds and mammals. Indeed, we are only beginning to appreciate the role of temporally and spatially constrained neurosteroidogenesis, like estradiol and testosterone being made in the brain, on the rapid regulation of complex behaviors.


Stress and Neuroimmunology  

Eric S. Wohleb

Stress is experienced when stimuli pose a perceived or actual threat to an organism. Exposure to a stressor initiates physiological and behavioral responses that are aimed at restoring homeostasis. In particular, stress activates the hypothalamic-pituitary-adrenal axis, leading to release of glucocorticoids, and engages the autonomic nervous system, causing release of norepinephrine. These “stress hormones” have widespread effects, because most cells express respective receptors that initiate cell-type-specific molecular signaling pathways. In the brain, acute stress promotes neuronal activation, resulting in alertness and adaptive behavioral responses. However, chronic or uncontrolled stress exposure can have deleterious effects on neuronal function, including loss of synaptic connections, which leads to behavioral and cognitive impairments. Stress responses also influence the function of brain-resident microglia and peripheral immune cells that interact with the brain, and alterations in these neuroimmune systems can contribute to the neurobiological and behavioral effects of chronic stress. Ongoing research is aimed at uncovering the molecular and cellular mechanisms that mediate stress effects on neuroimmune systems, and vice versa.


Stress-Modulated Pathways  

Nicolas Rohleder

Stress is a condition or an experience that is pervasive throughout human life. While there are many definitions of stress, a common notion is that stress is processed in the central nervous system and has effects on health that are mediated by stress-modulated pathways. Several brain areas, such as the amygdala and the broader limbic system, are involved in interpreting situations as potentially stressful. The signals of these areas converge in the hypothalamus, which orchestrates peripheral stress-modulated pathways, mainly the hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS). Health effects of stress are mediated by long-term alterations of basic stress system activity, which has downstream effects on pathophysiological pathways such as the inflammatory system.


Suprachiasmatic Nucleus Anatomy, Physiology, and Neurochemistry  

Rae Silver

We live in an approximately 24-hour world and circadian rhythms have evolved to adapt organisms to the opportunities presented by Earth’s 24-hour cycle of light and dark. A “master clock” located in the suprachiasmatic nucleus (SCN) of the brain orchestrates daily rhythms in all manner of behavioral, endocrine, metabolic, autonomic, and homeostatic systems in our bodies. The SCN is comprised of about 20,000 neurons and about one third as many astroglia. How can so few neurons and astroglia guide so many rhythms? How do neurons time out an interval as long as a day? The answers are a case study in understanding how genes within cells, and cells within circuits, function together to perform complex activities and optimize bodily functions. While individual clock cells are found in virtually all bodily tissues, the unique connectome of the SCN, its specialized afferent inputs from the retinohypothalamic tract, and its neural and humoral outputs enable its “babel” of neuronal types to synchronize their activity and signal time to the rest of the body. At the molecular-cellular level, circadian rhythms are regulated by a 24-hour transcriptional–translational feedback loop. At the SCN tissue level, individual SCN neurons coordinate their gene expression and electrical activity, working together in circuits that sustain coherent rhythms. The SCN has many distinct cell types based on their neurotransmitters, neuropeptides, and afferent and efferent connections. There has been much progress in unraveling the dynamic network organization that underlies the SCN network’s communications. Though the precise anatomical connections underlying interneuronal communication in the SCN are not completely understood, key signaling mechanisms that sustain the SCN’s intrinsic rhythmicity have been tackled using intersectional genomic tools. Transgenic animals that permit the visualization of clock gene–protein expression have enabled analysis of SCN network activity over time. Availability of animals bearing mutations in clock genes or proteins enable the determination of changes within neurons, among neurons in networks, and their impact on behavior. The use of continuous readouts of circadian activity that track behavior, or clock gene expression, or electrical activity changes over time, within an SCN or a single neuron, leads the way to unraveling mechanisms sustaining the circadian timing system. Because the results of circadian studies generate huge amounts of data, the entry of mathematical modelers and statisticians into the field has begun to yield useful and testable predictions on how these multiplexed systems work to adapt to our 24-hour world.


The Neuroendocrinology of Empathy  

James Burkett and Farzaneh Naghavi

“Empathy” is an umbrella term for any type of process in which one is affected by the emotional state of others, and it is of great importance for daily social interaction. Empathic processes are thought to have evolved in the context of parental care to motivate caregivers to respond to helpless neonates’ needs, but over time may have been generalized outside the rearing context to make a wider social network and help shape social behaviors. It is becoming more apparent that in several psychiatric disorders, such as major depressive disorder, autism spectrum disorder, and antisocial personality disorder, impaired empathic behaviors are correlated with the severity of the disease and a reduced quality of life. Therefore, developing scientific avenues for the study of empathy, its mechanisms, and origins is important for human health and understanding the human condition.


The Regulation of Sleep  

Craig Heller

The words “regulation” and “control” have different meanings. A rich literature exists on the control mechanisms of sleep—the genomic, molecular, cellular, and circuit processes responsible for arousal state changes and characteristics. The regulation of sleep refers to functions and homeostatic maintenance of those functions. Much less is known about sleep regulation than sleep control, largely because functions of sleep are still unknown. Regulation requires information about the regulated variable that can be used as feedback information to achieve optimal levels. The circadian timing of sleep is regulated, and the feedback information is entraining stimuli such as the light–dark cycle. Sleep itself is homeostatically regulated, as evidenced by sleep deprivation experiments. Eletroenceophalography (EEG) slow-wave activity (SWA) is regulated, and it appears that adenosine is the major source of feedback information, and that fact indicates an energetic function for sleep. The last aspect of sleep regulation discussed in this short article is the non-rapid eye movement (NREM) and rapid eye movement (REM) sleep cycling. Evidence is discussed that supports the argument that NREM sleep is in a homeostatic relationship with wake, and REM sleep is in a homeostatic relationship with NREM sleep.


Thirst and Water Balance  

Derek Daniels

Maintaining water balance is critical for survival, but our bodies are constantly losing more water than we produce. Consuming water, therefore, is needed to restore what is lost by sweating, bleeding, vomiting, urinating, even breathing. Because the fluid in the body is divided into intracellular and extracellular compartments, and because depletion can happen in one compartment without affecting the other, separate detection mechanisms for losses in each are required. Moreover, the relatively high concentration of sodium in the extracellular space means that sodium loss accompanies extracellular dehydration. Accordingly, the behavioral response to loss of fluid from the extracellular space needs to include sodium intake. Activity of osmoreceptors (in the case of intracellular loss), or baroreceptors and the renin-angiotensin system (in the case of extracellular loss), underlies the responses to perturbations of fluid balance, and promotes the appropriate behaviors needed to restore balance to the system. The peptide angiotensin II (AngII) is a key component of these responses. Studies of AngII in drinking have been critical in our understanding of how a peripherally derived peptide can act in the brain without transport across the blood–brain barrier, and AngII-induced drinking has served as an important model for the study of intracellular signaling pathways that affect behavior. Although much has been discovered about these systems and how they respond to fluid deficits, the precise means by which the systems generate a behavioral response and the mechanism that mediates satiety remains poorly understood. Nevertheless, ongoing experiments on these open questions have already started to provide a new perspective on the negative reinforcement that is provided by drinking under conditions of thirst.