1-5 of 5 Results  for:

  • Invertebrate Neuroscience x
  • Molecular and Cellular Systems x
Clear all

Article

Genetics of C. elegans Behavior  

Denise S. Walker, Yee Lian Chew, and William R. Schafer

The nematode Caenorhabditis elegans is among the most intensely studied animals in modern experimental biology. Its amenability to classical and molecular genetics, compact nervous system, and transparency to optogenetic recording and manipulation have led to its being widely used to investigate how individual gene products act in the context of neuronal circuits to generate behavior. C. elegans was the first animal neuronal connectome to be characterized at the level of individual neurons and synapses, and the wiring organization shows significant parallels with the micro- and macro-level structures of more complex brains. It uses a wide array of sensory cues (mechanical, gustatory, olfactory, and thermal), with impressive precision, to determine an appropriate behavioral response, in the form of changes in locomotion and other motor outputs. The small number of neurons (302) and their highly stereotyped morphology have enabled the interrogation of the precise function of individual neurons, in terms of both the genes that they express and the behaviors in which they function. Approximately one third are sensory neurons, located around the mouth and in the tail, as well as along the length of the body. A complex network of interneurons connects these to the motor neurons, the majority of which output to the body wall muscles, arranged along the body, determining the changes in direction and speed of locomotion required for behaviors such as taxiing up gradients of food-related cues or avoiding noxious cues. The ability to combine information about the precise function of individual neurons with circuit knowledge, genetics, and optogenetic approaches has been critical in advancing the molecular and circuit-level understanding of the mechanisms underlying C. elegans’s behavior. In common with that of other animals, C. elegans’s behavior is subject to change in response to prior experience, and this same complement of experimental approaches has provided significant insight into how plasticity and changes in behavioral states are achieved.

Article

Drosophila Reward Circuits  

John S. Hernandez, Tariq M. Brown, and Karla R. Kaun

The ability to sense and respond to a rewarding stimulus is a key advantage for animals in their natural environment. The circuits that mediate these responses are complex, and it has been difficult to identify the fundamental principles of reward structure and function. However, the well-characterized brain anatomy and sophisticated neurogenetic tools in Drosophila melanogaster make the fly an ideal model to understand the mechanisms through which reward is encoded. Drosophila find food, water, intoxicating substances, and social acts rewarding. Basic monoaminergic neurotransmitters, including dopamine (DA), serotonin (5-HT), and octopamine (OA), play a central role in encoding these rewards. DA is central to sensing, encoding, responding, and predicting reward, whereas 5-HT and OA carry information about the environment that influences DA circuit activity. In contrast, slower-acting neuromodulators such as hormones and neuropeptides play a key role in both encoding the pleasurable stimulus and modulating how the internal environment of the fly influences reward sensation and seeking. Recurring circuit motifs for reward signaling identified in Drosophila suggest that these key principles will help elucidate understanding of how reward circuits function in all animals.

Article

Cephalochordate Nervous System  

Simona Candiani and Mario Pestarino

The central and peripheral nervous systems of amphioxus adults and larvae are characterized by morphofunctional features relevant to understanding the origins and evolutionary history of the vertebrate CNS. Classical neuroanatomical studies are mainly on adult amphioxus, but there has been a recent focus, both by TEM and molecular methods, on the larval CNS. The latter is small and remarkably simple, and new data on the localization of glutamatergic, GABAergic/glycinergic, cholinergic, dopaminergic, and serotonergic neurons within the larval CNS are now available. In consequence, it has been possible begin the process of identifying specific neuronal circuits, including those involved in controlling larval locomotion. This is especially useful for the insights it provides into the organization of comparable circuits in the midbrain and hindbrain of vertebrates. A much better understanding of basic chordate CNS organization will eventually be possible when further experimental data will emerge.

Article

Hemichordate Nervous System  

Norio Miyamoto and Hiroshi Wada

Hemichordates are marine invertebrates consisting of two distinct groups: the solitary enteropneusts and the colonial pterobranchs. Hemichordates are phylogenetically a sister group to echinoderm composing Ambulacraria. The adult morphology of hemichordates shares some features with chordates. For that reason, hemichordates have been considered key organisms to understand the evolution of deuterostomes and the origin of the chordate body plan. The nervous system of hemichordates is also important in the discussion of the origin of centralized nervous systems. However, unlike other deuterostomes, such as echinoderms and chordates, information on the nervous system of hemichordates is limited. Recent improvements in the accessibility of embryos, development of functional tools, and genomic resources from several model organisms have provided essential information on the nervous system organization and neurogenesis in hemichordates. The comparison of the nervous system between hemichordates and other bilaterians helps to elucidate the origin of the chordate central nervous system. Extant hemichordates are divided into two groups: enteropneusts and pterobranchs. The nervous system of adult enteropneusts consists of nerve cords and the basiepidermal nerve net. The two nerve cords run along the dorsal and ventral midlines. The dorsal nerve cord forms a tubular structure in the collar region. The two nerve cords are connected through the prebranchial nerve ring. The larval nervous system of enteropneusts develops along the ciliary band and there is a ganglion at the anterior end of the body called the apical ganglion. A pair of pigmented eyespots is situated at the lateral side of the apical ganglion. The adult nervous system of pterobranchs is basiepidermal and there are several condensations of plexuses. The most prominent one is the brain, located at the base of the tentaculated arms. From the brain, small fibers radiate and enter tentaculated arms to form a tentacle nerve in each. There is a basiepidermal nerve cord in the ventral midline of the trunk.

Article

Caenorhabditis elegans Olfaction  

Douglas K. Reilly and Jagan Srinivasan

To survive, animals must properly sense their surrounding environment. The types of sensation that allow for detecting these changes can be categorized as tactile, thermal, aural, or olfactory. Olfaction is one of the most primitive senses, involving the detection of environmental chemical cues. Organisms must sense and discriminate between abiotic and biogenic cues, necessitating a system that can react and respond to changes quickly. The nematode, Caenorhabditis elegans, offers a unique set of tools for studying the biology of olfactory sensation. The olfactory system in C. elegans is comprised of 14 pairs of amphid neurons in the head and two pairs of phasmid neurons in the tail. The male nervous system contains an additional 89 neurons, many of which are exposed to the environment and contribute to olfaction. The cues sensed by these olfactory neurons initiate a multitude of responses, ranging from developmental changes to behavioral responses. Environmental cues might initiate entry into or exit from a long-lived alternative larval developmental stage (dauer), or pheromonal stimuli may attract sexually mature mates, or repel conspecifics in crowded environments. C. elegans are also capable of sensing abiotic stimuli, exhibiting attraction and repulsion to diverse classes of chemicals. Unlike canonical mammalian olfactory neurons, C. elegans chemosensory neurons express more than one receptor per cell. This enables detection of hundreds of chemical structures and concentrations by a chemosensory nervous system with few cells. However, each neuron detects certain classes of olfactory cues, and, combined with their synaptic pathways, elicit similar responses (i.e., aversive behaviors). The functional architecture of this chemosensory system is capable of supporting the development and behavior of nematodes in a manner efficient enough to allow for the genus to have a cosmopolitan distribution.