1-20 of 31 Results

Article

Richard L. Doty

Decreased ability to smell is common in older persons. Some demonstrable smell loss is present in more than 50% of those 65 to 80 years of age, with up to 10% having no smell at all (anosmia). Over the age of 80, 75% exhibit some loss with up to 20% being totally anosmic. The causes of these decrements appear multifactorial and likely include altered intranasal airflow patterns, cumulative damage to the olfactory receptor cells from viruses and other environmental insults, decrements in mucosal metabolizing enzymes, closure of the cribriform plate foramina through which olfactory receptor cells axons project to the brain, loss of selectivity of receptor cells to odorants, and altered neurotransmission, including that exacerbated in some age-related neurodegenerative diseases.

Article

Echolocating bats have evolved an active sensing system, which supports 3D perception of objects in the surroundings and permits spatial navigation in complete darkness. Echolocating animals produce high frequency sounds and use the arrival time, intensity, and frequency content of echo returns to determine the distance, direction, and features of objects in the environment. Over 1,000 species of bats echolocate with signals produced in their larynges. They use diverse sonar signal designs, operate in habitats ranging from tropical rain forest to desert, and forage for different foods, including insects, fruit, nectar, small vertebrates, and even blood. Specializations of the mammalian auditory system, coupled with high frequency hearing, enable spatial imaging by echolocation in bats. Specifically, populations of neurons in the bat central nervous system respond selectively to the direction and delay of sonar echoes. In addition, premotor neurons in the bat brain are implicated in the production of sonar calls, along with movement of the head and ears. Audio-motor circuits, within and across brain regions, lay the neural foundation for acoustic orientation by echolocation in bats.

Article

Thad E. Wilson and Kristen Metzler-Wilson

Thermoregulation is a key physiologic homeostatic process and is subdivided into autonomic, behavioral, and adaptive divisions. Autonomic thermoregulation is a neural process related to the sympathetic and parasympathetic nervous systems. Autonomic thermoregulation is controlled at the subcortical level to alter physiologic processes of heat production and loss to maintain internal temperature. Mammalian, including human, autonomic responses to acute heat or cold stresses are dependent on environmental conditions and species genotype and phenotype, but many similarities exist. Responses to an acute heat stress begin with the sensation of heat, leading to central processing of the information and sympathetic responses via end organs, which can include sweat glands, vasculature, and airway and cardiac tissues. Responses to an acute cold stress begin with the sensation of cold, which leads to central processing of the information and sympathetic responses via end organs, which can include skeletal and piloerector muscles, brown adipose tissue, vasculature, and cardiac tissue. These autonomic responses allow homeostasis of internal temperature to be maintained across a wide range of external temperatures for most mammals, including humans. At times, uncompensable thermal challenges occur that can be maintained for only limited periods of time before leading to pathophysiologic states of hyperthermia or hypothermia.

Article

Despite the intrinsically greater capacity for axons to regenerate in injured peripheral nerves than after injury to the central nervous system, functional recovery after most nerve injuries is very poor. A need for novel treatments that will enhance axon regeneration and improve recovery is substantial. Several such experimental treatments have been studied, each based on part of the stereotypical cellular responses that follow a nerve injury. Genetic manipulations of Schwann cells that have transformed from a myelinating to a repair phenotype that either increase their production of axon growth-promoting molecules, decrease production of inhibitors, or both result in enhanced regeneration. Local or systemic application of these molecules or small molecule mimetics of them also will promote regeneration. The success of treatments that stimulate axonal protein synthesis at the site of the nerve injury and in the growing axons, an early and important response to axon injury, is significant, as is that of manipulations of the types of immune cells that migrate into the injury site or peripheral ganglia. Modifications of the extracellular matrix through which the regenerating axons course, including the stimulation of new blood vessel formation, promotes the navigation of nascent regenerating neurites past the injury site, resulting in greater axon regeneration. Experimental induction of expression of regeneration associated gene activity in the cell bodies of the injured neurons is especially useful when regenerating axons must regenerate over long distances to reinnervate targets. The consistently most effective experimental approach to improving axon regeneration in peripheral nerves has been to increase the activity of the injured neurons, either through electrical, optical, or chemogenetic stimulation or through exercise. These activity-dependent experimental therapies show greatest promise for translation to use in patients.

Article

Natalia Duque-Wilckens and Brian C. Trainor

Aggressive behavior plays an essential role in survival and reproduction across animal species—it has been observed in insects, fish, reptiles, and mammals including humans. Even though specific aggressive behaviors are quite heterogeneous across species, many of the underlying mechanisms modulating aggression are highly conserved. For example, in a variety of species arginine vasopressin (AVP) and its homologue vasotocin in the hypothalamus, play an important role in regulating aggressive behaviorssuch as territorial and inter male aggression. Similarly in the medial amygdala, activation of a subpopulation of GABAergic neurons promotes aggression, while the prefrontal cortex exerts inhibitory control over aggressive behaviors. An important caveat in the aggression literature is that it is focused primarily on males, probably because in most species males are more aggressive than females. However, female aggression is also highly prevalent in many contexts, as it can affect access to resources such as mates, food, and offspring survival. Although it is likely that many underlying mechanisms are shared between sexes, there is sex specific variation in aggression, type, magnitude, and contexts, which suggests that there are important sex differences in how aggression is regulated. For example, while AVP acts to modulate aggression in both male and female hamsters, it increases male aggression but decreases female aggression. These differences can occur at the extent of neurotransmitter or hormones release, sensitivity (i.e., receptor expression), and/or molecular responses.

Article

Nicolas Dallière, Lindy Holden-Dye, James Dillon, Vincent O'Connor, and Robert J. Walker

The microscopic free-living nematode worm Caenorhabditis elegans was the first metazoan to have its genome sequenced and for many decades has served as a genetically tractable model for the investigation of neural mechanisms of behavioral plasticity. Many of its behaviors involve the detection of its food, bacteria, which are ingested and transported to the intestine by a muscular pharynx. The structure of the pharynx and the circuitry of the pharyngeal nervous system that regulates pharyngeal activity have been described in some detail. This has provided a platform for understanding how this simple organism finely tunes its feeding behavior in response to the changing availability and quality of its food, and in the context of its own nutritional status. This resonates with fundamental principles of energy homeostasis that occur throughout the animal kingdom.

Article

Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.

Article

Simona Candiani and Mario Pestarino

The central and peripheral nervous systems of amphioxus adults and larvae are characterized by morphofunctional features relevant to understanding the origins and evolutionary history of the vertebrate CNS. Classical neuroanatomical studies are mainly on adult amphioxus, but there has been a recent focus, both by TEM and molecular methods, on the larval CNS. The latter is small and remarkably simple, and new data on the localization of glutamatergic, GABAergic/glycinergic, cholinergic, dopaminergic, and serotonergic neurons within the larval CNS are now available. In consequence, it has been possible begin the process of identifying specific neuronal circuits, including those involved in controlling larval locomotion. This is especially useful for the insights it provides into the organization of comparable circuits in the midbrain and hindbrain of vertebrates. A much better understanding of basic chordate CNS organization will eventually be possible when further experimental data will emerge.

Article

Z. Yan Wang and Clifton W. Ragsdale

Over 700 species of cephalopods live in the Earth’s waters, occupying almost every marine zone, from the benthic deep to the open ocean to tidal waters. The greatly varied forms and charismatic behaviors of these animals have long fascinated humans. Cephalopods are short-lived, highly mobile predators with sophisticated brains that are the largest among the invertebrates. While cephalopod brains share a similar anatomical organization, the nervous systems of coleoids (octopus, squid, cuttlefish) and nautiloids all display important lineage-specific neural adaptations. The octopus brain, for example, has for its arms a well-developed tactile learning and memory system that is vestigial in, or absent from, that of other cephalopods. The unique anatomy of the squid giant fiber system enables rapid escape in the event of capture. The brain of the nautilus comprises fewer lobes than its coleoid counterparts, but contains olfactory system structures and circuits not yet identified in other cephalopods.

Article

Donald Edwards

Crayfish are decapod crustaceans that use different forms of escape to flee from different types of predatory attacks. Lateral and Medial Giant escapes are released by giant interneurons of the same name in response to sudden, sharp attacks from the rear and front of the animal, respectively. A Lateral Giant (LG) escape uses a fast rostral abdominal flexion to pitch the animal up and forward at very short latency. It is succeeded by guided swimming movements powered by a series of rapid abdominal flexions and extensions. A Medial Giant (MG) escape uses a fast, full abdominal flexion to thrust the animal directly backward, and is also followed by swimming that moves the animal rapidly away from the attacker. More slowly developing attacks evoke Non-Giant (NG) escapes, which have a longer latency, are varied in the form of abdominal flexion, and are directed initially away from the attacker. They, too, are followed by swimming away from the attacker. The neural circuitry for LG escape has been extensively studied and has provided insights into the neural control of behavior, synaptic integration, coincidence detection, electrical synapses, behavioral and synaptic plasticity, neuroeconomical decision-making, and the modulatory effects of monoamines and of changes in the animal’s social status.

Article

Tim C. Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte

The goal of computational neuroscience is to find mechanistic explanations of how the nervous system processes information to give rise to cognitive function and behavior. At the heart of the field are its models, that is, mathematical and computational descriptions of the system being studied, which map sensory stimuli to neural responses and/or neural to behavioral responses. These models range from simple to complex. Recently, deep neural networks (DNNs) have come to dominate several domains of artificial intelligence (AI). As the term “neural network” suggests, these models are inspired by biological brains. However, current DNNs neglect many details of biological neural networks. These simplifications contribute to their computational efficiency, enabling them to perform complex feats of intelligence, ranging from perceptual (e.g., visual object and auditory speech recognition) to cognitive tasks (e.g., machine translation), and on to motor control (e.g., playing computer games or controlling a robot arm). In addition to their ability to model complex intelligent behaviors, DNNs excel at predicting neural responses to novel sensory stimuli with accuracies well beyond any other currently available model type. DNNs can have millions of parameters, which are required to capture the domain knowledge needed for successful task performance. Contrary to the intuition that this renders them into impenetrable black boxes, the computational properties of the network units are the result of four directly manipulable elements: input statistics, network structure, functional objective, and learning algorithm. With full access to the activity and connectivity of all units, advanced visualization techniques, and analytic tools to map network representations to neural data, DNNs represent a powerful framework for building task-performing models and will drive substantial insights in computational neuroscience.

Article

Talita de Melo e Silva, Catherine Miriam Czeisler, and José Javier Otero

Breathing is essential for survival and is precisely regulated by the nervous system. From a neuroanatomical perspective, the respiratory tract is innervated by afferent and efferent autonomic nerves, which regulate aspects of airway function and ensure appropriate tissue oxygenation. The general concepts of how the peripheral nervous system (PNS) develops as it relates to lung function are reviewed. The vagus (cranial nerve X), a mixed motor and sensory nerve, supplies parasympathetic and sensory fibers to the airways. During development, preganglionic visceromotor efferent neurons of the cranial nerves arise in the hindbrain basal plate and later migrate dorsally through the neuroepithelium. The neural crest is a migratory and multipotent embryonic cell population that develops at the dorsal portion of the neural tube, which delaminates from the neuroepithelium to enter distinct pathways, forming various derivatives, among which include the peripheral nervous system. Neural crest cells emerging from the vagal region migrate into the ventral foregut and give rise to intrinsic ganglia in the respiratory tract that are innervated from the vagus and send out postganglionic fibers. The lung is innervated by sympathetic nerves derived from the upper thoracic and cervical ganglia. The sympathetic preganglionic neurons are derived from trunk neural crest cells that migrate, forming two chains of sympathetic ganglia referred to as the lateral vertebral sympathetic chains. Neural crest cells that migrate along defined pathways to generate sympathetic ganglia also derivate the dorsal root ganglia that send somatosensory afferent innervations to the respiratory tract.

Article

Carlos A. Díaz-Balzac and José E. García-Arrarás

The nervous system of echinoderms has been studied for well over a century. Nonetheless, the information available is disparate, with in-depth descriptions for the nervous component of some groups or of particular organs while scant data is available for others. The best studied representatives to date are the nervous system of echinoid embryos and larva, and the adult holothurian nervous system. Although described sometimes inaccurately as a neural net, the echinoderm nervous system consists of well-defined neural structures. This is observed since early embryogenesis when activation of the anterior neuroectoderm gene regulatory networks initiate the formation of the embryonic nervous system. This system then undergoes expansion and differentiation to form the larval nervous system, which is centered on the ciliary bands. This “simpler” nervous system is then metamorphosed into the adult echinoderm nervous system. The adult echinoderm nervous system is composed of a central nervous system made up of a nerve ring connected to a series of radial nerve cords. Peripheral nerves extending from the radial nerve cords or nerve ring connect with the peripheral nervous system, located in other organs or effectors including the viscera, podia, body wall muscles, and connective tissue. Both the central and peripheral nervous systems are composed of complex and diverse subdivisions. These are mainly characterized by the expression of neurotransmitters, namely acetylcholine, catecholamines, histamine, amino acids, GABA, and neuropeptides. Other areas of interest include the amazing regenerative capabilities of echinoderms that have been shown to be able to regenerate their nervous system components; and the analysis of the echinoderm genome that has provided essential insights into the molecular basis of how echinoderms develop an adult pentaradial symmetry from bilaterally symmetric larvae and the role of the nervous system in this process.

Article

Natalie Hempel de Ibarra and Misha Vorobyev

Color plays an important role in insect life—many insects forage on colorful flowers and/or have colorful bodies. Accordingly, most insects have multiple spectral types of photoreceptors in their eyes, which gives them the capability to see colors. However, insects cannot perceive colors in the same way as human beings do because their eyes and brains differ substantially. An insect was the first nonhuman animal whose ability to discriminate colors has been demonstrated - in the beginning of the 20th century, von Frisch showed that the honeybee, Apis mellifera, can discriminate blue from any shade of gray. This method, called the gray-card experiment, is an accepted “gold standard” for the proof of color vision in animals. Insect species differ in the combinations of photoreceptors in their eyes, with peak sensitivities in ultraviolet (UV) and/or blue, green, and sometimes red parts of the spectrum. The number of photoreceptor spectral types can be as little as one or two, as in the grasshopper Phlaeoba and the beetle Tribolium, and as many as 10 and more in some species of butterflies and dragonflies. However, not all spectral receptor types are necessarily used for color vison. For example, the butterfly Papilio xuthus uses only four of its eight photoreceptors for color vision. Some insects have separate channels for processing chromatic and achromatic (lightness) information. In the honeybee, the achromatic channel has high spatial resolution and is mediated only by long-wavelength sensitive, or “green,” photoreceptors alone, whereas the spatial resolution of chromatic vision is low and mediated by all three spectral types of photoreceptors. Whether other insects have a similar separation of chromatic and achromatic vision remains uncertain. In contrast to vertebrates, insects do not use distinct sets of photoreceptors for nocturnal vision, and some nocturnal insects can see color at night. Insect photoreceptors are inherently polarization sensitive because of their microvillar organization. Therefore, some insects cannot discriminate changes in polarization of light from changes in its spectral composition. However, many insects sacrifice polarization sensitivity to retain reliable color vision. For example, in the honeybee, polarization sensitivity is eliminated by twisting the rhabdom in most parts of its compound eye except for the dorsal rim area that is specialized in polarization vision. Insects experience color constancy and color-contrast phenomena. Although in humans these aspects of vision are often attributed to cortical processing of color, simple models based on photoreceptor adaptation may explain color constancy and color induction in insects. Color discriminations can be evaluated using a simple model, which assumes that it is limited by photoreceptor noise. This model can help to predict discrimination of colors that are ecologically relevant, such as flower colors for pollinating insects. However, despite the fact that many insects forage on flowers, there is no evidence that insect pollinator vision coevolved with flower colors. The diverse color vision in butterflies appears to adaptively facilitate the recognition of their wing colors.

Article

Richard Satterlie

Two dichotomies exist within the swim systems of jellyfish—one centered on the mechanics of locomotion and the other on phylogenetic differences in nervous system organization. For example, medusae with prolate body forms use a jet propulsion mechanism, whereas medusae with oblate body forms use a drag-based marginal rowing mechanism. Independent of this dichotomy, the nervous systems of hydromedusae are very different from those of scyphomedusae and cubomedusae. In hydromedusae, marginal nerve rings contain parallel networks of neurons that include the pacemaker network for the control of swim contractions. Sensory structures are similarly distributed around the margin. In scyphomedusae and cubomedusae, the swim pacemakers are restricted to marginal integration centers called rhopalia. These ganglionlike structures house specialized sensory organs. The swim system adaptations of these three classes (Hydrozoa, Scyphozoa, and Cubozoa), which are constrained by phylogenetics, still adhere to the biomechanical efficiencies of the prolate/oblate dichotomy. This speaks to the adaptational abilities of the cnidarian nervous system as specialized in the medusoid forms.

Article

Synaptic connections in the brain can change their strength in response to patterned activity. This ability of synapses is defined as synaptic plasticity. Long lasting forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), are thought to mediate the storage of information about stimuli or features of stimuli in a neural circuit. Since its discovery in the early 1970s, synaptic plasticity became a central subject of neuroscience, and many studies centered on understanding its mechanisms, as well as its functional implications.

Article

Much progress has been made in unraveling the mechanisms that underlie the transition from acute to chronic pain. Traditional beliefs are being replaced by novel, more powerful concepts that consider the mutual interplay of neuronal and non-neuronal cells in the nervous system during the pathogenesis of chronic pain. The new focus is on the role of neuroinflammation for neuroplasticity in nociceptive pathways and for the generation, amplification, and mislocation of pain. The latest insights are reviewed here and provide a basis for understanding the interdependence of chronic pain and its comorbidities. The new concepts will guide the search for future therapies to prevent and reverse chronic pain. Long-term changes in the properties and functions of nerve cells, including changes in synaptic strength, membrane excitability, and the effects of inhibitory neurotransmitters, can result from a wide variety of conditions. In the nociceptive system, painful stimuli, peripheral inflammation, nerve injuries, the use of or withdrawal from opioids—all can lead to enhanced pain sensitivity, to the generation of pain, and/or to the spread of pain to unaffected sites of the body. Non-neuronal cells, especially microglia and astrocytes, contribute to changes in nociceptive processing. Recent studies revealed not only that glial cells support neuroplasticity but also that their activation can trigger long-term changes in the nociceptive system.

Article

Kenway Louie and Paul W. Glimcher

A core question in systems and computational neuroscience is how the brain represents information. Identifying principles of information coding in neural circuits is critical to understanding brain organization and function in sensory, motor, and cognitive neuroscience. This provides a conceptual bridge between the underlying biophysical mechanisms and the ultimate behavioral goals of the organism. Central to this framework is the question of computation: what are the relevant representations of input and output, and what algorithms govern the input-output transformation? Remarkably, evidence suggests that certain canonical computations exist across different circuits, brain regions, and species. Such computations are implemented by different biophysical and network mechanisms, indicating that the unifying target of conservation is the algorithmic form of information processing rather than the specific biological implementation. A prime candidate to serve as a canonical computation is divisive normalization, which scales the activity of a given neuron by the activity of a larger neuronal pool. This nonlinear transformation introduces an intrinsic contextual modulation into information coding, such that the selective response of a neuron to features of the input is scaled by other input characteristics. This contextual modulation allows the normalization model to capture a wide array of neural and behavioral phenomena not captured by simpler linear models of information processing. The generality and flexibility of the normalization model arises from the normalization pool, which allows different inputs to directly drive and suppress a given neuron, effectively separating information that drives excitation and contextual modulation. Originally proposed to describe responses in early visual cortex, normalization has been widely documented in different brain regions, hierarchical levels, and modalities of sensory processing; furthermore, recent work shows that the normalization extends to cognitive processes such as attention, multisensory integration, and decision making. This ubiquity reinforces the canonical nature of the normalization computation and highlights the importance of an algorithmic framework in linking biological mechanism and behavior.

Article

Nir Nesher, Guy Levy, Letizia Zullo, and Benyamin Hochner

The octopus, with its eight long and flexible arms, is an excellent example of the independent evolution of highly efficient motor behavior in a soft-bodied animal. Studies will be summarized to show that the amazing behavioral motor abilities of the octopus are achieved through a special embodied organization of its flexible body, unusual morphology, and a unique central and peripheral distribution of its extremely large nervous system. This special embodied organization of brain–body–environment reciprocal interactions makes it possible to overcome the difficulties involved in generation and control of movement in an animal, which unlike vertebrates and arthropods lacks rigid skeletal appendages.

Article

Caleigh Guoynes and Catherine Marler

How hormones and neuromodulators initiate and maintain paternal care is important for understanding the evolution of paternal care and the plasticity of the social brain. The focus here is on mammalian paternal behavior in rodents, non-human primates and humans. Only 5% of mammalian species express paternal care, and many of those species likely evolved the behavior convergently. This means that there is a high degree of variability in how hormones and neuromodulators shape paternal care across species. Important factors to consider include social experience (alloparental care, mating, pair bonding, raising a previous litter), types of care expressed (offspring protection, providing and sharing food, socio-cognitive development), and timing of hormonal changes (after mating, during gestation, after contact with offspring). The presence or absence of infanticide towards offspring prior to mating may also be a contributor, especially in rodents. Taking these important factors into account, we have found some general trends across species. (1) Testosterone and progesterone tend to be negatively correlated with paternal care but promote offspring defense in some species. The most evidence for a positive association between paternal care and testosterone have appeared in rodents. (2) Prolactin, oxytocin, corticosterone, and cortisol tend to be positively correlated. (3) Estradiol and vasopressin are likely nuclei specific—with some areas having a positive correlation with paternal care and others having a negative association. Some mechanisms appear to be coopted from females and others appear to have evolved independently. Overall, the neuroendocrine system seems especially important for mediating environmental influences on paternal behavior.