Oxford Research Encyclopedia of Neuroscience is now available via subscription and perpetual access. Visit About to learn more, meet the editorial board, or learn how to subscribe.

Dismiss
Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 07 August 2020

Summary and Keywords

Spinal cord injury (SCI) disrupts the autonomic nervous system (ANS) and impairs communication with organ systems throughout the body, resulting in chronic multi-organ pathology and dysfunction. This dysautonomia contributes to the pronounced immunosuppression and gastrointestinal dysfunction seen after SCI. All of these factors likely contribute to the development of gut dysbiosis after SCI—an imbalance in the composition of the gut microbiota that can impact the development and progression of numerous pathological conditions, including SCI. The gut microbiota are the community of microbes (bacteria, viruses, fungi) that live in the GI tract and are critical for nutrient absorption, digestion, and immune system development. These microbes also communicate with the CNS through modulation of the immune system, production of neuroactive metabolites and neurotransmitters, and activation of the vagus nerve.

After SCI, gut dysbiosis develops and persists for more than one year from the time of injury. In experimental models of SCI, gut dysbiosis is correlated with changes in inflammation and functional recovery. Moreover, probiotic treatment can improve locomotor recovery and immune function in the gut-associated lymphoid tissue (GALT). Since different types of bacteria produce different metabolites with unique physiological and pathological effects throughout the body, it may be possible to predict the prevalence or severity of post-injury immune dysfunction and other related comorbidities (e.g., metabolic disease, fatigue, anxiety) using microbiome sequencing data. As research identifies microbial-derived small molecules and the genes responsible for their production, it is likely that it will become feasible to manipulate these molecules to affect human biology and disease.

Keywords: neuroinflammation, microbiome, spinal cord injury, probiotics, intestinal dysbiosis

Access to the complete content on Oxford Research Encyclopedia of Neuroscience requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.