1-1 of 1 Results  for:

  • Keywords: feedback x
  • Sensory Systems x
Clear all

Article

Many mammals, including humans, rely primarily on vision to sense the environment. While a large proportion of the brain is devoted to vision in highly visual animals, there are not enough neurons in the visual system to support a neuron-per-object look-up table. Instead, visual animals evolved ways to rapidly and dynamically encode an enormous diversity of visual information using minimal numbers of neurons (merely hundreds of millions of neurons and billions of connections!). In the mammalian visual system, a visual image is essentially broken down into simple elements that are reconstructed through a series of processing stages, most of which occur beneath consciousness. Importantly, visual information processing is not simply a serial progression along the hierarchy of visual brain structures (e.g., retina to visual thalamus to primary visual cortex to secondary visual cortex, etc.). Instead, connections within and between visual brain structures exist in all possible directions: feedforward, feedback, and lateral. Additionally, many mammalian visual systems are organized into parallel channels, presumably to enable efficient processing of information about different and important features in the visual environment (e.g., color, motion). The overall operations of the mammalian visual system are to: (1) combine unique groups of feature detectors in order to generate object representations and (2) integrate visual sensory information with cognitive and contextual information from the rest of the brain. Together, these operations enable individuals to perceive, plan, and act within their environment.