In the last two decades of the 20th century, key findings in the field of estrogen signaling completely changed our understanding of hormones: first, steroidogenesis was demonstrated in the CNS; second, a vast majority of cells in the nervous system were shown to have estrogen receptors; third, a second nuclear estrogen receptor (ERß) was cloned; and finally, “nuclear” receptors were shown to be present and functional in the cell membrane. Shortly thereafter, even more membrane estrogen receptors were discovered. Steroids (estrogens, in particular) began to be considered as neurotransmitters and their receptors were tethered to G protein-coupled receptor signaling cascades. In some parts of the brain, levels of steroids appeared to be independent of those found in the circulation and yet, circulating steroids had profound actions on the brain physiology. In this review, we discuss the interaction of peripheral and central estrogen action in the context of female reproduction—one of the best-studied aspects of steroid action. In addition to reviewing the evidence for steroidogenesis in the hypothalamus, we review membrane-localized nuclear receptors coupling to G protein-signaling cascades and the downstream physiological consequences for reproduction. We will also introduce newer work that demonstrates cell signaling for a common splice variant of estrogen receptor-α (ERα), and membrane action of neuroprogesterone in regulating estrogen positive feedback.
Article
Paul E. Micevych and Melinda A. Mittelman-Smith
Article
Understanding of the brain mechanisms regulating reproductive behaviors in female laboratory animals has been aided greatly by our knowledge of estrogen receptors in the brain. Hypothalamic neurons that express the gene for estrogen receptor-alpha regulate activity in the neural circuit for the simplest female reproductive response, lordosis behavior. In turn, many of the neurotransmitter inputs to the critical hypothalamic neurons have been studied using electrophysiological and neurochemical techniques. The upshot of all of these studies is that lordosis behavior presents the best understood set of mechanisms for any mammalian behavior.