1-18 of 18 Results

  • Keywords: behavior x
Clear all

Article

Since the early 1980s, evidence suggesting that the vertebrate brain is a rich source of steroid hormones has been decisive and extensive. This evidence includes data from many vertebrate species and describes almost every enzyme necessary for the conversion of cholesterol to androgens and estrogens. In contrast, the behavioral relevance of neurosteroidogenesis is more equivocal and mysterious. Nonetheless, the presence of a limited number of steroidogenic enzymes in the brain of a few species has clearly been linked to reliable behavioral phenotype.

Article

Nicolas Dallière, Lindy Holden-Dye, James Dillon, Vincent O'Connor, and Robert J. Walker

The microscopic free-living nematode worm Caenorhabditis elegans was the first metazoan to have its genome sequenced and for many decades has served as a genetically tractable model for the investigation of neural mechanisms of behavioral plasticity. Many of its behaviors involve the detection of its food, bacteria, which are ingested and transported to the intestine by a muscular pharynx. The structure of the pharynx and the circuitry of the pharyngeal nervous system that regulates pharyngeal activity have been described in some detail. This has provided a platform for understanding how this simple organism finely tunes its feeding behavior in response to the changing availability and quality of its food, and in the context of its own nutritional status. This resonates with fundamental principles of energy homeostasis that occur throughout the animal kingdom.

Article

Gretchen N. Neigh, Mandakh Bekhbat, and Sydney A. Rowson

Bidirectional interactions between the immune system and central nervous system have been acknowledged for centuries. Over the past 100 years, pioneering studies in both animal models and humans have delineated the behavioral consequences of neuroimmune activation, including the different facets of sickness behavior. Rodent studies have uncovered multiple neural pathways and mechanisms that mediate anorexia, fever, sleep alterations, and social withdrawal following immune activation. Furthermore, work conducted in human patients receiving interferon treatment has elucidated some of the mechanisms underlying immune-induced behavioral changes such as malaise, depressive symptoms, and cognitive deficits. These findings have provided the foundation for development of treatment interventions for conditions in which dysfunction of immune-brain interactions leads to behavioral pathology. Rodent models of neuroimmune activation frequently utilize endotoxins and cytokines to directly stimulate the immune system. In the absence of pathogen-induced inflammation, a variety of environmental stressors, including psychosocial stressors, also lead to neuroimmune alterations and concurrent behavioral changes. These behavioral alterations can be assessed using a battery of behavioral paradigms while distinguishing acute sickness behavior from the type of behavioral outcome being assessed. Animal studies have also been useful in delineating the role of microglia, the neuroendocrine system, neurotransmitters, and neurotrophins in mediating the behavioral implications of altered neuroimmune activity. Furthermore, the timing and duration of neuroimmune challenge as well as the sex of the organism can impact the behavioral manifestations of altered neuroimmune activity. Finally, neuroimmune modulation through pharmacological or psychosocial approaches has potential for modulating behavior.

Article

Derek Daniels

Maintaining water balance is critical for survival, but our bodies are constantly losing more water than we produce. Consuming water, therefore, is needed to restore what is lost by sweating, bleeding, vomiting, urinating, even breathing. Because the fluid in the body is divided into intracellular and extracellular compartments, and because depletion can happen in one compartment without affecting the other, separate detection mechanisms for losses in each are required. Moreover, the relatively high concentration of sodium in the extracellular space means that sodium loss accompanies extracellular dehydration. Accordingly, the behavioral response to loss of fluid from the extracellular space needs to include sodium intake. Activity of osmoreceptors (in the case of intracellular loss), or baroreceptors and the renin-angiotensin system (in the case of extracellular loss), underlies the responses to perturbations of fluid balance, and promotes the appropriate behaviors needed to restore balance to the system. The peptide angiotensin II (AngII) is a key component of these responses. Studies of AngII in drinking have been critical in our understanding of how a peripherally derived peptide can act in the brain without transport across the blood–brain barrier, and AngII-induced drinking has served as an important model for the study of intracellular signaling pathways that affect behavior. Although much has been discovered about these systems and how they respond to fluid deficits, the precise means by which the systems generate a behavioral response and the mechanism that mediates satiety remains poorly understood. Nevertheless, ongoing experiments on these open questions have already started to provide a new perspective on the negative reinforcement that is provided by drinking under conditions of thirst.

Article

Ashlyn Swift-Gallant and S. Marc Breedlove

While prenatal sex hormones guide the development of sex-typical reproductive structures, they also act on the developing brain, resulting in sex differences in brain and behavior in animal models. Stemming from this literature is the prominent hypothesis that prenatal neuroendocrine factors underlie sex differences in human sexual orientation, to explain why most males have a preference for female sexual partners (gynephilia), whereas most females display a preference for male sexual partners (androphilia). Convergent evidence from experiments of nature and indirect markers of prenatal hormones strongly support a role for prenatal androgens in same-same sexual orientations in women, although this finding is specific to a subset of lesbians who are also gender nonconforming (“butch”). More gender-conforming lesbians (“femmes”) do not show evidence of increased prenatal androgens. The literature has been more mixed for male sexual orientation: some report evidence of low prenatal androgen exposure, while others report evidence of high androgen levels and many other studies find no support for a role of prenatal androgen exposure in the development of androphilia in males. Recent evidence suggests there may be subgroups of gay men who owe their sexual orientation to distinct biodevelopmental mechanisms, which could account for these mixed findings. Although this research is young, it is similar to findings from lesbian populations, because gay men who are more gender nonconforming, and report a preference for receptive anal sex, differ on markers of prenatal development from gay men who are more gender conforming and report a preference for insertive anal sex. This chapter concludes with future research avenues including assessing whether multiple biodevelopmental pathways underlie sexual orientation and whether neuroendocrine factors and other biological mechanisms (e.g., immunology, genetics) interact to promote a same-sex sexual orientation.

Article

In response to changes in metabolic demand, the cardiovascular and respiratory systems are regulated in a highly coordinated fashion, such that both ventilation and cardiac output increase in a parallel fashion, thus maintaining a relatively constant level of arterial blood PO2, PCO2, and pH. In addition, external alerting stimuli that trigger defensive or orienting behavioral responses also trigger coordinated cardiorespiratory changes that are appropriate for the particular behavior. Furthermore, environmental challenges such as hypoxia or submersion evoke complex cardiovascular and respiratory response that have the effect of increasing oxygen uptake and/or conserving the available oxygen. The brain mechanisms that are responsible for generating coordinated cardiorespiratory responses can be divided into reflex mechanisms and feedforward (central command) mechanisms. Reflexes that regulate cardiorespiratory function arise from a wide variety of internal receptors, and include those that signal changes in blood pressure, the level of blood oxygenation, respiratory activity, and metabolic activity. In most cases more than one reflex is activated, so that the ultimate cardiorespiratory response depends upon the interaction between different reflexes. The essential central pathways that subserve these reflexes are largely located within the brainstem and spinal cord, although they can be powerfully modulated by descending inputs arising from higher levels of the brain. The brain defense mechanisms that regulate the cardiorespiratory responses to external threatening stimuli (e.g., the sight, sound, or odor of a predator) are highly complex, and include both subcortical and cortical systems. The subcortical system, which includes the basal ganglia and midbrain colliculi as essential components, is phylogenetically ancient and generates immediate coordinated cardiorespiratory and motor responses to external stimuli. In contrast, the defense system that includes the cortex, hypothalamus, and limbic system evolved at a later time, and is better adapted to generating coordinated responses to external stimuli that involve cognitive appraisal.

Article

Sabine Kastner and Timothy J. Buschman

Natural scenes are cluttered and contain many objects that cannot all be processed simultaneously. Due to this limited processing capacity, neural mechanisms are needed to selectively enhance the information that is most relevant to one’s current behavior and to filter unwanted information. We refer to these mechanisms as “selective attention.” Attention has been studied extensively at the behavioral level in a variety of paradigms, most notably, Treisman’s visual search and Posner’s paradigm. These paradigms have also provided the basis for studies directed at understanding the neural mechanisms underlying attentional selection, both in the form of neuroimaging studies in humans and intracranial electrophysiology in non-human primates. The selection of behaviorally relevant information is mediated by a large-scale network that includes regions in all major lobes as well as subcortical structures. Attending to a visual stimulus modulates processing across the visual processing hierarchy with stronger effects in higher-order areas. Current research is aimed at characterizing the functions of the different network nodes as well as the dynamics of their functional connectivity.

Article

Karim Fouad, Abel Torres-Espín, and Keith K. Fenrich

Spinal cord injury results in a wide range of behavioral changes including impaired motor and sensory function, autonomic dysfunction, spasticity, and depression. Currently, restoring lost motor function is the most actively studied and sought-after goal of spinal cord injury research. This research is rooted in the fact that although self-repair following spinal cord injury in adult mammals is very limited, there can be some recovery of motor function. This recovery is strongly dependent on the lesion size and location as well as on neural activity of denervated networks activated mainly through physical activity (i.e., rehabilitative training). Recovery of motor function is largely due to neuroplasticity, which includes adaptive changes in spared and injured neural circuitry. Neuroplasticity after spinal cord injury is extensive and includes mechanisms such as moderate axonal sprouting, the formation of new synaptic connections, network remapping, and changes to neuron cell properties. Neuroplasticity after spinal cord injury has been described at various physiological and anatomical levels of the central nervous system including the brain, brainstem, and spinal cord, both above and below injury sites. The growing number of mechanisms underlying postinjury plasticity indicate the vast complexity of injury-induced plasticity. This poses important opportunities to further enhance and harness plasticity in order to promote recovery. However, the diversity of neuroplasticity also creates challenges for research, which is frequently based on mechanistically driven approaches. The appreciation of the complexity of neuronal plasticity and the findings that recovery is based on a multitude and interlinked adaptations will be essential in developing meaningful new treatment avenues.

Article

Danielle S. Stolzenberg, Kimberly L. Hernandez-D'Anna, Oliver J. Bosch, and Joseph S. Lonstein

For female mammals, caring for young until weaning or even longer is an extension of the reproductive burden that begins at insemination. Given the high price females potentially pay for failing to transmit genetic material to future generations, a multitude of interacting endocrine, neuroendocrine, and other neurochemical determinants are in place to ensure competent maternal caregiving by the time the offspring are born. Achieving this high maternal competency at parturition seems effortless but is quite a feat given that many nulliparous and parentally inexperienced female mammals are more prone to ignore, if not outright harm, conspecific neonates. There are important roles for ovarian steroids (e.g., estradiol and progesterone), adrenal steroids (e.g., glucocorticoids), and neuropeptide hormones (e.g., prolactin, oxytocin, arginine-vasopressin, and corticotropin-releasing factor) released during pregnancy, parturition, and postpartum in the onset and maintenance of caregiving behaviors in a broad range of commonly studied animals including rats, mice, rabbits, sheep, and primates. It is especially remarkable that the same collection of hormones influences caregiving similarly across these diverse animals, although to varying degrees. In addition to the well-known effects of hormones and neuropeptides on motherhood, more recent research indicates that experience-dependent epigenetic effects are also powerful modulators of the same neural substrates that can influence maternal responding.

Article

Thomas F. Mathejczyk and Mathias F. Wernet

Evolution has produced vast morphological and behavioral diversity amongst insects, including very successful adaptations to a diverse range of ecological niches spanning the invasion of the sky by flying insects, the crawling lifestyle on (or below) the earth, and the (semi-)aquatic life on (or below) the water surface. Developing the ability to extract a maximal amount of useful information from their environment was crucial for ensuring the survival of many insect species. Navigating insects rely heavily on a combination of different visual and non-visual cues to reliably orient under a wide spectrum of environmental conditions while avoiding predators. The pattern of linearly polarized skylight that results from scattering of sunlight in the atmosphere is one important navigational cue that many insects can detect. Here we summarize progress made toward understanding how different insect species sense polarized light. First, we present behavioral studies with “true” insect navigators (central-place foragers, like honeybees or desert ants), as well as insects that rely on polarized light to improve more “basic” orientation skills (like dung beetles). Second, we provide an overview over the anatomical basis of the polarized light detection system that these insects use, as well as the underlying neural circuitry. Third, we emphasize the importance of physiological studies (electrophysiology, as well as genetically encoded activity indicators, in Drosophila) for understanding both the structure and function of polarized light circuitry in the insect brain. We also discuss the importance of an alternative source of polarized light that can be detected by many insects: linearly polarized light reflected off shiny surfaces like water represents an important environmental factor, yet the anatomy and physiology of underlying circuits remain incompletely understood.

Article

Luis Carrillo-Reid and Rafael Yuste

Despite over a century of neuroscience research, the nature of the neural code, that is, how neuronal activity underlies motor, sensory, and cognitive functions, remains elusive. Understanding the causal relation between neuronal activity and behavior requires a new conceptual paradigm that considers groups of neurons, instead of individual neurons, as the functional building blocks of the brain. These “neuronal ensembles,” defined as groups of neurons with coordinated activity that are reliably recalled by sensory stimuli, motor programs, or cognitive states, could be basic modular functional units of neural circuits. This hypothesis is consistent with past and present neuroscience results and could provide a broader framework to more effectively decipher the neural code in normal brains and provide new insights into how abnormal brain activity could lead to mental and neurological disease.

Article

Susan C. P. Renn and Nadia Aubin-Horth

Several species show diversity in reproductive patterns that result from phenotypic plasticity. This reproductive plasticity is found for example in mate choice, parental care, reproduction suppression, reproductive tactics, sex role, and sex reversal. Studying the genome-wide changes in transcription that are associated with these plastic phenotypes will help answer several questions, including those regarding which genes are expressed and where they are expressed when an individual is faced with a reproductive choice, as well as those regarding whether males and females have the same brain genomic signature when they express the same behaviors, or if they activate sex-specific molecular pathways to output similar behavioral responses. The comparative approach of studying transcription in a wide array of species allows us to uncover genes, pathways, and biological functions that are repeatedly co-opted (“genetic toolkit”) as well as those that are unique to a particular system (“genomic signature”). Additionally, by quantifying the transcriptome, a labile trait, using time series has the potential to uncover the causes and consequences of expressing one plastic phenotype or another. There are of course gaps in our knowledge of reproductive plasticity, but no shortage of possibilities for future directions.

Article

During the evolution of animals, survival and reproduction depended upon mechanisms that maintained internal homeostasis in the face of environmental change. These environmental changes included fluctuations in ambient temperature, food availability, humidity, day length, and population density. Most, if not all, of these variables have effects on the availability of energy, and most vertebrate species have mechanisms that sense energy availability and adjust behavioral priorities accordingly. For example, when the availability of food and potential mating partners is stable and abundant, brain mechanisms often inhibit ingestive behavior, increase energy expenditure, and give priority to courtship and mating. In response to severe energy shortages, brain mechanisms are likely to stimulate foraging, food hoarding, and overeating. These same deficits often delay reproductive development or inhibit adult reproductive behavior. Such adaptations involve the integration of sensory signals with peripheral hormone signals and central effectors, and they are key to understanding health and disease, particularly obesity, eating disorders, and diabetes. The link between energy balance and reproduction recurs repeatedly, whether in the context of the sensory-somatic system, the autonomic nervous system, or the neuroendocrine cascades. Peripheral signals that are detected by receptors on vagal and splanchnic nerves are relayed to the caudal hindbrain. This brain area contains the effectors for peripheral hormone secretion and for chewing and swallowing, and this same brain area contains receptors for humoral and metabolic signals from peripheral circulation. The caudal hindbrain is therefore a strong candidate for integration of multiple signals that control the initiation of meals, meal size, energy storage, and energy expenditure, including the energy expended on reproduction. There are some differences between the reproductive and ingestive mechanisms, but there are also many striking similarities. There are still gaps in our knowledge about the nature and location of metabolic receptors and the pathways to their effectors. Some of the most promising research is designed to shed light on how hormonal signals might be enhanced or modulated by the peripheral energetic condition (e.g., the level of oxidizable metabolic fuels).

Article

William B. Kristan Jr.

New techniques for recording the activity of many neurons simultaneously have given insights into how neuronal circuits make the decision to perform one of many possible behaviors. A long-standing hypothesis for how behavioral choices are made in any animal is that “command neurons” are responsible for selecting individual behaviors, and that these same neurons inhibit the command neurons that elicit other behaviors. In fact, this mechanism has turned out to be just one of several ways that such decision-making is accomplished. In particular, for some behavioral choices, the circuits appear to overlap, sometimes extensively, to perform two or more behaviors. Making decisions using such “multifunctional neurons” has been proposed for large neural networks, but this strategy appears to be used in relatively small nervous systems, too. These simpler nervous systems can serve as useful test systems to test hypotheses about how the dynamics of networks of neurons can be used to select among different behaviors, similar to the mechanisms used by leeches deciding to swim, shorten, crawl, or feed.

Article

Mathew H. Evans, Michaela S.E. Loft, Dario Campagner, and Rasmus S. Petersen

Whiskers (vibrissae) are prominent on the snout of many mammals, both terrestrial and aquatic. The defining feature of whiskers is that they are rooted in large follicles with dense sensory innervation, surrounded by doughnut-shaped blood sinuses. Some species, including rats and mice, have elaborate muscular control of their whiskers and explore their environment by making rhythmic back-and-forth “whisking” movements. Whisking movements are purposefully modulated according to specific behavioral goals (“active sensing”). The basic whisking rhythm is controlled by a premotor complex in the intermediate reticular formation. Primary whisker neurons (PWNs), with cell bodies in the trigeminal ganglion, innervate several classes of mechanoreceptive nerve endings in the whisker follicle. Mechanotransduction involving Piezo2 ion channels establishes the fundamental physical signals that the whiskers communicate to the brain. PWN spikes are triggered by mechanical forces associated with both the whisking motion itself and whisker-object contact. Whisking is associated with inertial and muscle contraction forces that drive PWN activity. Whisker-object contact causes whiskers to bend, and PWN activity is driven primarily by the associated rotatory force (“bending moment”). Sensory signals from the PWNs are routed to many parts of the hindbrain, midbrain, and forebrain. Parallel ascending pathways transmit information about whisker forces to sensorimotor cortex. At each brainstem, thalamic, and cortical level of these pathways, there are one or more maps of the whisker array, consisting of cell clusters (“barrels” in the primary somatosensory cortex) whose spatial arrangement precisely mirrors that of the whiskers on the snout. However, the overall architecture of the whisker-responsive regions of the brain system is best characterized by multilevel sensory-motor feedback loops. Its intriguing biology, in combination with advantageous properties as a model sensory system, has made the whisker system the platform for seminal insights into brain function.

Article

It is conceptually reasonable to explore how the evolution of behavior involves changes in neural circuitry. Progress in determining this evolutionary relationship has been limited in neuroscience because of difficulties in identifying individual neurons that contribute to the evolutionary development of behaviors across species. However, the results from the feeding systems of gastropod mollusks provide evidence for this concept of co-evolution because the evolution of different types of feeding behaviors in this diverse group of mollusks is mirrored by species-specific changes in neural circuitry. The evolution of feeding behaviors involves changes in the motor actions that allow diverse food items to be acquired and ingested. The evolution in neural control accompanies this variation in food and the associated changes in flexibility of feeding behaviors. This is present in components of the feeding network that are involved in decision making, rhythm generation, and behavioral switching but is absent in background mechanisms that are conserved across species, such as those controlling arousal state. These findings show how evolutionary changes, even at the single neuron level, closely reflect the details of behavioral evolution.

Article

Robert S. Bridges

Prolactin (PRL) is a protein hormone with a molecular weight of approximately 23 KD, although variants in size exist. It binds to receptor dimers on the cytoplasmic surface of its target cells and acts primarily through the activation of the STAT5 pathway, which in turn alters gene activity. Pituitary prolactin, while being the main, but not only, source of PRL, is primarily under inhibitory control by hypothalamic dopaminergic neurons. Release of dopamine (DA) into the hypothalamo-hypophyseal portal system binds on DA D2 receptors on PRL-producing lactotrophs within the anterior pituitary gland. Prolactin’s functions include the regulation of behaviors that include maternal care, anxiety, and feeding as well as lactogenesis, hepatic bile formation, immune function, corpora lutea function, and more generally cell proliferation and differentiation. Dysfunctional conditions related to prolactin’s actions include its role in erectile dysfunction and male infertility, mood disorders such as depression during the postpartum period, possible roles in breast and hepatic cancer, prostate hyperplasia, galactorrhea, obesity, immune function, and diabetes. Future studies will further elucidate both the underlying mechanisms of prolactin action together with prolactin’s involvement in these clinical disorders.

Article

Although the Cnidaria have evolved a wide range of body forms matched with an equally varied neural anatomy, individual species exhibit common patterns of behavior. For example, in all species a key challenge for the nervous system is to transfer food from the peripherally mounted tentacles to the centrally located stomach. Foraging movements, necessary to maintain the food supply, must be accomplished in such a way as to avoid interference with the primary objective of getting prey into the mouth. Furthermore, the hunt for prey must be balanced by a measured response to “threat.” Different species respond to threat in markedly different ways, but in each case foraging is inhibited, just as it is during transmission of food. One hundred years ago, G. H. Parker questioned whether a centralized or a locally organized nervous system could best account for sea anemone behavior. Anatomical and electrophysiological studies now suggest that in most Cnidaria there is a degree of hierarchical control, with local reflexes coordinated by more condensed systems of neurons. This organization is highly developed in the nerve rings of hydrozoan medusae and takes the form of ganglion-like rhopalia in the Cubozoa. Even in hydrozoan polyps such as Hydra there are at least four separate neuronal systems. It is likely that the underlying mechanisms (containing both homologous and analogous elements) will be best revealed by a comparative approach that directly relates behavior with its molecular basis. Useful examples include comparisons between sea anemones with and without through-conducting systems; between hydra with and without oral rings; between medusae with and without coordinated escape swimming. Recent advances in transgenomic labeling have shown the way forward.