1-3 of 3 Results

  • Keywords: central sensitization x
Clear all


Gastropod Learning and Memory (Aplysia, Hermissenda, Lymnaea, and Others)  

Alexis Bédécarrats and Romuald Nargeot

Euopisthobranchia (Aplysia), Nudipleura (Tritonia, Hermissenda, Pleurobranchaea), and Panpulmonata (Lymnaea, Helix, Limax) gastropod mollusks exhibit a variety of reflex, rhythmic, and motivated behaviors that can be modified by elementary forms of learning and memory. The relative simplicity of their nervous systems and behavioral repertoires has allowed the uncovering of processes of neuronal and synaptic plasticity underlying non-associative learning, such as habituation, sensitization, and different forms of associative learning, such as classical and operant conditioning. Decades of work on these simpler and accessible animal systems have almost uniquely yielded an understanding into the mechanistic basis of learning and memory spanning behavior, neuronal circuitry, and molecules. Given the conservative nature of evolutionary processes, the mechanisms deciphered have also provided valuable insights into the neural basis of learning and memory in other metazoans, including higher vertebrates.


BDNF-Induced Plasticity of Spinal Circuits Underlying Pain and Learning  

Sandra M. Garraway

Understanding of the various types of plasticity that occur in the spinal cord, as well as understanding of spinal cord functions, has vastly improved over the past 50 years, mainly due to an increase in the number of research studies and review articles on the subject. It is now understood that the spinal cord is not merely a passive conduit of neural impulses. Instead, the spinal cord can independently execute complex functions. Numerous experimental approaches have been utilized for more targeted exploration of spinal cord functions. For example, isolating the spinal cord from supraspinal influences has been used to demonstrate that simple forms of learning can be performed by spinal neuronal networks. Moreover, reduced preparations, such as acute spinal cord slices, have been used to show that spinal neurons undergo different types of modulation, including activity-dependent synaptic modification. Most spinal cord processes, ranging from integration of incoming sensory input to execution of locomotor outputs, involve plasticity. Nociceptive processing that leads to pain and spinal learning is an example of plasticity that is well-studied in the spinal cord. At the neural level, both processes involve an interplay of cellular mediators, which include glutamate receptors, protein kinases, and growth factors. The neurotrophin brain-derived neurotrophic factor (BDNF) has also been implicated in these processes, specifically as a promoter of both pro-nociception and spinal learning mechanisms. Interestingly, the role of BDNF in mediating spinal plasticity can be altered by injury. The literature spanning approximately 5 decades is reviewed and the role of BDNF is discussed in mediating cellular plasticity underlying pain processing and learning within the spinal cord.


Achieving Adaptive Plasticity in the Spinal Cord  

James W. Grau

The traditional view of central nervous system function presumed that learning is the province of the brain. From this perspective, the spinal cord functions primarily as a conduit for incoming/outgoing neural impulses, capable of organizing simple reflexes but incapable of learning. Research has challenged this view, demonstrating that neurons within the spinal cord, isolated from the brain by means of a spinal cut (transection), can encode environmental relations and that this experience can have a lasting effect on function. The exploration of this issue has been informed by work in the learning literature that establishes the behavioral criteria and work within the pain literature that has shed light on the underlying neurobiological mechanisms. Studies have shown that spinal systems can exhibit single stimulus learning (habituation and sensitization) and are sensitive to both stimulus–stimulus (Pavlovian) and response–outcome (instrumental) relations. Regular environmental relations can both bring about an alteration in the performance of a spinally mediated response and impact the capacity to learn in future situations. The latter represents a form of behavioral metaplasticity. At the neurobiological level, neurons within the central gray matter of the spinal cord induce lasting alterations by engaging the NMDA receptor and signal pathways implicated in brain-dependent learning and memory. Of particular clinical importance, uncontrollable/unpredictable pain (nociceptive) input can induce a form of neural over-excitation within the dorsal horn (central sensitization) that impairs adaptive learning. Pain input after a contusion injury can increase tissue loss and undermines long-term recovery.