1-2 of 2 Results

  • Keywords: mechanosensation x
Clear all


Nathaniel J. Himmel, Atit A. Patel, and Daniel N. Cox

Nociception is a protective mechanism that mediates behavioral responses to a range of potentially damaging stimuli, including noxious temperature, chemicals, and mechanical stimulation. Nociceptive mechanisms are found throughout metazoans. Noxious stimuli are transduced by specialized, high-threshold peripheral nociceptors, which fire action potentials to elicit adaptive behavioral responses. Nociception is essential for survival and provides a mechanism for sensory perception of noxious stimuli, which alerts the organism to potential environmental dangers. When coupled with pain sensation and complex behavioral responses, this mechanism protects the organism from incipient damage. Moreover, acute and chronic pain may manifest as altered nociception in neuropathic pain states. Elucidating the neural bases of nociception is therefore important for identifying and implementing novel strategies for the treatment of neuropathic pain, as well as uncovering the mechanistic bases by which the nervous system integrates information to produce specific behaviors in response to a range of noxious stimuli. Invertebrate organisms, such as Drosophila melanogaster and Caenorhabditis elegans, have emerged as powerful, genetically tractable platforms for exploring these questions. Here, we concisely review the current state of knowledge regarding the cells, molecules, neural circuits, and behaviors associated with invertebrate nociception in the fruit fly and nematode worm.


Mathew H. Evans, Michaela S.E. Loft, Dario Campagner, and Rasmus S. Petersen

Whiskers (vibrissae) are prominent on the snout of many mammals, both terrestrial and aquatic. The defining feature of whiskers is that they are rooted in large follicles with dense sensory innervation, surrounded by doughnut-shaped blood sinuses. Some species, including rats and mice, have elaborate muscular control of their whiskers and explore their environment by making rhythmic back-and-forth “whisking” movements. Whisking movements are purposefully modulated according to specific behavioral goals (“active sensing”). The basic whisking rhythm is controlled by a premotor complex in the intermediate reticular formation. Primary whisker neurons (PWNs), with cell bodies in the trigeminal ganglion, innervate several classes of mechanoreceptive nerve endings in the whisker follicle. Mechanotransduction involving Piezo2 ion channels establishes the fundamental physical signals that the whiskers communicate to the brain. PWN spikes are triggered by mechanical forces associated with both the whisking motion itself and whisker-object contact. Whisking is associated with inertial and muscle contraction forces that drive PWN activity. Whisker-object contact causes whiskers to bend, and PWN activity is driven primarily by the associated rotatory force (“bending moment”). Sensory signals from the PWNs are routed to many parts of the hindbrain, midbrain, and forebrain. Parallel ascending pathways transmit information about whisker forces to sensorimotor cortex. At each brainstem, thalamic, and cortical level of these pathways, there are one or more maps of the whisker array, consisting of cell clusters (“barrels” in the primary somatosensory cortex) whose spatial arrangement precisely mirrors that of the whiskers on the snout. However, the overall architecture of the whisker-responsive regions of the brain system is best characterized by multilevel sensory-motor feedback loops. Its intriguing biology, in combination with advantageous properties as a model sensory system, has made the whisker system the platform for seminal insights into brain function.