1-6 of 6 Results

  • Keywords: motor x
Clear all

Article

Nir Nesher, Guy Levy, Letizia Zullo, and Benyamin Hochner

The octopus, with its eight long and flexible arms, is an excellent example of the independent evolution of highly efficient motor behavior in a soft-bodied animal. Studies will be summarized to show that the amazing behavioral motor abilities of the octopus are achieved through a special embodied organization of its flexible body, unusual morphology, and a unique central and peripheral distribution of its extremely large nervous system. This special embodied organization of brain–body–environment reciprocal interactions makes it possible to overcome the difficulties involved in generation and control of movement in an animal, which unlike vertebrates and arthropods lacks rigid skeletal appendages.

Article

The neocortex is a part of the forebrain of mammals that is an innovation of mammal-like “reptilian” synapsid ancestors of early mammals. This neocortex emerged from a small region of dorsal cortex that was present in earlier ancestors and is still found in the forebrain of present-day reptiles. Instead of the thick structure of six layers of cells (five layers) and fibers (one layer) of neocortex of mammals, the dorsal cortex was characterized by a single layer of pyramidal neurons and a scattering of small, largely inhibitory neurons. In reptiles, the dorsal cortex is dominated by visual inputs, with outputs that relate to behavior and memory. The thicker neocortex of six layers in early mammals was already divided into a number of functionally specialized zones called cortical areas that were predominantly sensory in function, while relating to important aspects of motor behavior via subcortical projections. These early sensorimotor areas became modified in various ways as different branches of the mammalian radiation evolved, and neocortex often increased in size and the number of cortical areas, likely by the process of specializations within areas that subdivided areas. At least some areas, perhaps most, subdivided in another way by evolving two or more alternating types of small regions of different functional specializations, now referred to as cortical modules or columns. The specializations within and across cortical areas included those in the sizes of neurons and the extents of their processes, the dendrites and axons, and thus connections with other neurons. As a result, the neocortex of present-day mammals varies greatly within and across phylogenetically related groups (clades), while retaining basic features of organization from early ancestral mammals. In a number of present-day (extant) mammals, brains are relatively small and have little neocortex, with few areas and little structural differentiation, thus resembling early mammals. Other small mammals with little neocortex have specialized some part via selective enlargement and structural modifications to promote certain sensory abilities. Other mammals have a neocortex that is moderately to greatly expanded, with more cortical areas directly related to sensory processing and cognition and memory. The human brain is extreme in this way by having more neocortex in proportion to the rest of the brain, more cortical neurons, and likely more cortical areas.

Article

Wolfgang Stein

The crustacean stomatogastric nervous system contains a set of distinct but interacting rhythmic motor circuits that control movements of the foregut. When isolated, these circuits produce activity patterns that are almost perfect replicas of their behavior in vivo. The ease with which distinct circuit neurons are identified, recorded, and manipulated has provided considerable insight into the general principles of how motor circuits operate and are controlled at the cellular level. The small number of relatively large neurons has facilitated several technical advances in neuroscience research and allowed the identification of one of the earliest circuit connectomes. This enabled, for the first time, studies of circuit dynamics using the relationships between all component neurons of a nervous center. A major discovery was that circuits are not dedicated to producing a single neuronal activity pattern, and that the involved neurons are not committed to particular circuits. This flexibility results predominantly from the ability of neuromodulators to change the cellular and synaptic properties of circuit neurons. The relatively unique access to, and detailed documentation of, identified circuit, sensory, and descending pathways has also started new avenues into examining how individual modulatory neurons and transmitters affect their target cells. Groundbreaking experimental and modeling work has further demonstrated that the intrinsic properties of neurons depend on their recent history of activation and that neurons and circuits counterbalance destabilizing influences by compensatory homeostatic regulation of ionic conductances. The stomatogastric microcircuits continue to provide key insight into neural circuit operation in numerically larger and less accessible systems.

Article

Tamar Makin and London Plasticity Lab

Phantom sensations are experienced by almost every person who has lost their hand in adulthood. This mysterious phenomenon spans the full range of bodily sensations, including the sense of touch, temperature, movement, and even the sense of wetness. For a majority of upper-limb amputees, these sensations will also be at times unpleasant, painful, and for some even excruciating to the point of debilitating, causing a serious clinical problem, termed phantom limb pain (PLP). Considering the sensory organs (the receptors in the skin, muscle or tendon) are physically missing, in order to understand the origins of phantom sensations and pain the potential causes must be studied at the level of the nervous system, and the brain in particular. This raises the question of what happens to a fully developed part of the brain that becomes functionally redundant (e.g. the sensorimotor hand area after arm amputation). Relatedly, what happens to the brain representation of a body part that becomes overused (e.g. the intact hand, on which most amputees heavily rely for completing daily tasks)? Classical studies in animals show that the brain territory in primary somatosensory cortex (S1) that was “freed up” due to input loss (hereafter deprivation) becomes activated by other body part representations, those neighboring the deprived cortex. If neural resources in the deprived hand area get redistributed to facilitate the representation of other body parts following amputation, how does this process relate to persistent phantom sensation arising from the amputated hand? Subsequent work in humans, mostly with noninvasive neuroimaging and brain stimulation techniques, have expanded on the initial observations of cortical remapping in two important ways. First, research with humans allows us to study the perceptual consequence of remapping, particularly with regards to phantom sensations and pain. Second, by considering the various compensatory strategies amputees adopt in order to account for their disability, including overuse of their intact hand and learning to use an artificial limb, use-dependent plasticity can also be studied in amputees, as well as its relationship to deprivation-triggered plasticity. Both of these topics are of great clinical value, as these could inform clinicians how to treat PLP, and how to facilitate rehabilitation and prosthesis usage in particular. Moreover, research in humans provides new insight into the role of remapping and persistent representation in facilitating (or hindering) the realization of emerging technologies for artificial limb devices, with special emphasis on the role of embodiment. Together, this research affords a more comprehensive outlook at the functional consequences of cortical remapping in amputees’ primary sensorimotor cortex.

Article

Spinal cord injury (SCI) affects well over a million people in the United States alone, and its personal and societal costs are huge. This article provides a current overview of the organization of somatosensory and motor pathways, in the context of hand/paw function in nonhuman primate and rodent models of SCI. Despite decades of basic research and clinical trials, therapeutic options remain limited. This is largely due to the fact that (i) spinal cord structure and function is very complex and still poorly understood, (ii) there are many species differences which can make translation from the rodent to primate difficult, and (iii) we are still some way from determining the detailed multilevel pathway responses affecting recovery. There has also been little focus, until recently, on the sensory pathways involved in SCI and recovery, which are so critical to hand function and the recovery process. The potential for recovery in any individual depends on many factors, including the location and size of the injury, the extent of sparing of fiber tracts, and the post-injury inflammatory response. There is also a progression of change over the first weeks and months that must be taken into account when assessing recovery. There are currently no good biomarkers of recovery, and while axon terminal sprouting is frequently used in the experimental setting as an indicator of circuit remodeling and “recovery,” the correlation between sprouting and functional recovery deserves scrutiny.

Article

Donald Edwards

Crayfish are decapod crustaceans that use different forms of escape to flee from different types of predatory attacks. Lateral and Medial Giant escapes are released by giant interneurons of the same name in response to sudden, sharp attacks from the rear and front of the animal, respectively. A Lateral Giant (LG) escape uses a fast rostral abdominal flexion to pitch the animal up and forward at very short latency. It is succeeded by guided swimming movements powered by a series of rapid abdominal flexions and extensions. A Medial Giant (MG) escape uses a fast, full abdominal flexion to thrust the animal directly backward, and is also followed by swimming that moves the animal rapidly away from the attacker. More slowly developing attacks evoke Non-Giant (NG) escapes, which have a longer latency, are varied in the form of abdominal flexion, and are directed initially away from the attacker. They, too, are followed by swimming away from the attacker. The neural circuitry for LG escape has been extensively studied and has provided insights into the neural control of behavior, synaptic integration, coincidence detection, electrical synapses, behavioral and synaptic plasticity, neuroeconomical decision-making, and the modulatory effects of monoamines and of changes in the animal’s social status.