The central complex (CX) is the only unpaired brain region of the insect brain. It is located at the interface of sensory processing and motor control and plays a vital role in context dependent action selection. The CX has four main tasks. First, the encoding of the insect’s orientation in space, i.e., the generation of an internal head direction signal based on both rotational self-motion and external sensory signals. Second, the generation of goal direction representations. Third, the selection of an appropriate goal direction based on context, internal state, and previous experience. And finally, the initiation of motor steering signals based on comparing heading direction and goal directions. The highly regular, almost crystalline neuroarchitecture of repeating computational elements provide the structural basis for these computations. These tight structure function relationships have revealed that the CX performs highly efficient, vector-based computations, in which vectors are encoded as sinusoidal activity patterns across populations of neurons. The deep insight into the computational algorithms implemented in this brain area have made the CX a prime model system to study the neural basis of context-dependent action selection and behavioral decisions, as well as the mechanisms of circuit evolution.
Article
The Insect Central Complex
Stanley Heinze
Article
Insect Navigation: Neural Basis to Behavior
Stanley Heinze
Navigation is the ability of animals to move through their environment in a planned manner. Different from directed but reflex-driven movements, it involves the comparison of the animal’s current heading with its intended heading (i.e., the goal direction). When the two angles don’t match, a compensatory steering movement must be initiated. This basic scenario can be described as an elementary navigational decision. Many elementary decisions chained together in specific ways form a coherent navigational strategy. With respect to navigational goals, there are four main forms of navigation: explorative navigation (exploring the environment for food, mates, shelter, etc.); homing (returning to a nest); straight-line orientation (getting away from a central place in a straight line); and long-distance migration (seasonal long-range movements to a location such as an overwintering place). The homing behavior of ants and bees has been examined in the most detail. These insects use several strategies to return to their nest after foraging, including path integration, route following, and, potentially, even exploit internal maps. Independent of the strategy used, insects can use global sensory information (e.g., skylight cues), local cues (e.g., visual panorama), and idiothetic (i.e., internal, self-generated) cues to obtain information about their current and intended headings.
How are these processes controlled by the insect brain? While many unanswered questions remain, much progress has been made in recent years in understanding the neural basis of insect navigation. Neural pathways encoding polarized light information (a global navigational cue) target a brain region called the central complex, which is also involved in movement control and steering. Being thus placed at the interface of sensory information processing and motor control, this region has received much attention recently and emerged as the navigational “heart” of the insect brain. It houses an ordered array of head-direction cells that use a wide range of sensory information to encode the current heading of the animal. At the same time, it receives information about the movement speed of the animal and thus is suited to compute the home vector for path integration. With the help of neurons following highly stereotypical projection patterns, the central complex theoretically can perform the comparison of current and intended heading that underlies most navigation processes. Examining the detailed neural circuits responsible for head-direction coding, intended heading representation, and steering initiation in this brain area will likely lead to a solid understanding of the neural basis of insect navigation in the years to come.
Article
The Natural Scene Network
Diane Beck and Dirk B. Walther
Interest in the neural representations of scenes centered first on the idea that the primate visual system evolved in the context of natural scene statistics, but with the advent of functional magnetic resonance imaging, interest turned to scenes as a category of visual representation distinct from that of objects, faces, or bodies. Research comparing such categories revealed a scene network comprised of the parahippocampal place area, the medial place area, and the occipital place area. The network has been linked to a variety of functions, including navigation, categorization, and contextual processing. Moreover, much is known about both the visual representations of scenes within the network as well as its role in and connections to the brain’s semantic system. To fully understand the scene network, however, more work is needed to both break it down into its constituent parts and integrate what is known into a coherent system or systems.
Article
Multisensory Integration and the Perception of Self-Motion
Kathleen E. Cullen
As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world, and of our orientation relative to gravity. Essential to this computation is the information provided by the vestibular system; it detects the rotational velocity and linear acceleration of our heads relative to space, making a fundamental contribution to our perception of self-motion and spatial orientation. Additionally, in everyday life, our perception of self-motion depends on the integration of both vestibular and nonvestibular cues, including visual and proprioceptive information. Furthermore, the integration of motor-related information is also required for perceptual stability, so that the brain can distinguish whether the experienced sensory inflow was a result of active self-motion through the world or if instead self-motion that was externally generated. To date, understanding how the brain encodes and integrates sensory cues with motor signals for the perception of self-motion during natural behaviors remains a major goal in neuroscience. Recent experiments have (i) provided new insights into the neural code used to represent sensory information in vestibular pathways, (ii) established that vestibular pathways are inherently multimodal at the earliest stages of processing, and (iii) revealed that self-motion information processing is adjusted to meet the needs of specific tasks. Our current level of understanding of how the brain integrates sensory information and motor-related signals to encode self-motion and ensure perceptual stability during everyday activities is reviewed.
Article
Sensing Polarized Light in Insects
Thomas F. Mathejczyk and Mathias F. Wernet
Evolution has produced vast morphological and behavioral diversity amongst insects, including very successful adaptations to a diverse range of ecological niches spanning the invasion of the sky by flying insects, the crawling lifestyle on (or below) the earth, and the (semi-)aquatic life on (or below) the water surface. Developing the ability to extract a maximal amount of useful information from their environment was crucial for ensuring the survival of many insect species. Navigating insects rely heavily on a combination of different visual and non-visual cues to reliably orient under a wide spectrum of environmental conditions while avoiding predators. The pattern of linearly polarized skylight that results from scattering of sunlight in the atmosphere is one important navigational cue that many insects can detect. Here we summarize progress made toward understanding how different insect species sense polarized light. First, we present behavioral studies with “true” insect navigators (central-place foragers, like honeybees or desert ants), as well as insects that rely on polarized light to improve more “basic” orientation skills (like dung beetles). Second, we provide an overview over the anatomical basis of the polarized light detection system that these insects use, as well as the underlying neural circuitry. Third, we emphasize the importance of physiological studies (electrophysiology, as well as genetically encoded activity indicators, in Drosophila) for understanding both the structure and function of polarized light circuitry in the insect brain. We also discuss the importance of an alternative source of polarized light that can be detected by many insects: linearly polarized light reflected off shiny surfaces like water represents an important environmental factor, yet the anatomy and physiology of underlying circuits remain incompletely understood.