1-2 of 2 Results

  • Keywords: neuroimaging x
Clear all

Article

Network Analyses and Nervous System Disorders  

John D. Medaglia and Danielle S. Bassett

Network analyses in nervous system disorders involve constructing and analyzing anatomical and functional brain networks from neuroimaging data to describe and predict the clinical syndromes that result from neuropathology. A network view of neurological disease and clinical syndromes facilitates accurate quantitative characterizations and mathematical models of complex nervous system disorders with relatively simple tools drawn from the field of graph theory. Networks are predominantly constructed from in vivo data acquired using physiological and neuroimaging techniques at the macroscale of nervous system organization. Studies support the emerging view that neuropsychiatric and neurological disorders result from pathological processes that disrupt the brain’s economically wired small-world organization. The lens of network science offers theoretical insight into progressive neurodegeneration, neuropsychological dysfunction, and potential anatomical targets for interventions ranging from pharmacological agents to brain stimulation.

Article

Visual Perception in the Human Brain: How the Brain Perceives and Understands Real-World Scenes  

Clemens G. Bartnik and Iris I. A. Groen

How humans perceive and understand real-world scenes is a long-standing question in neuroscience, cognitive psychology, and artificial intelligence. Initially, it was thought that scenes are constructed and represented by their component objects. An alternative view proposed that scene perception starts by extracting global features (e.g., spatial layout) first and individual objects in later stages. A third framework focuses on how the brain not only represents objects and layout but how this information combines to allow determining possibilities for (inter)action that the environment offers us. The discovery of scene-selective regions in the human visual system sparked interest in how scenes are represented in the brain. Experiments using functional magnetic resonance imaging show that multiple types of information are encoded in the scene-selective regions, while electroencephalography and magnetoencephalography measurements demonstrate links between the rapid extraction of different scene features and scene perception behavior. Computational models such as deep neural networks offer further insight by how training networks on different scene recognition tasks results in the computation of diagnostic features that can then be tested for their ability to predict activity in human brains when perceiving a scene. Collectively, these findings suggest that the brain flexibly and rapidly extracts a variety of information from scenes using a distributed network of brain regions.