1-4 of 4 Results

  • Keywords: sensitization x
Clear all

Article

Euopisthobranchia (Aplysia), Nudipleura (Tritonia, Hermissenda, Pleurobranchaea), and Panpulmonata (Lymnaea, Helix, Limax) gastropod mollusks exhibit a variety of reflex, rhythmic, and motivated behaviors that can be modified by elementary forms of learning and memory. The relative simplicity of their nervous systems and behavioral repertoires has allowed the uncovering of processes of neuronal and synaptic plasticity underlying non-associative learning, such as habituation, sensitization, and different forms of associative learning, such as classical and operant conditioning. Decades of work on these simpler and accessible animal systems have almost uniquely yielded an understanding into the mechanistic basis of learning and memory spanning behavior, neuronal circuitry, and molecules. Given the conservative nature of evolutionary processes, the mechanisms deciphered have also provided valuable insights into the neural basis of learning and memory in other metazoans, including higher vertebrates.

Article

Edgar T. Walters

Chronic pain lasting months or longer is very common, poorly treated, and sometimes devastating. Nociceptors are sensory neurons that usually are silent unless activated by tissue damage or inflammation. In humans their peripheral activation evokes conscious pain, and their spontaneous activity is highly correlated with spontaneous pain. Persistently hyperactive nociceptors mediate increased responses to normally painful stimuli (hyperalgesia) in chronic conditions and promote the sensitization of central pain pathways that allows low-threshold mechanoreceptors to elicit painful responses to innocuous stimuli (allodynia). Investigations of rodent models of neuropathic pain and hyperalgesic priming have revealed many alterations in nociceptors and associated cells that are implicated in the development and maintenance of chronic pain. These include chronic nociceptor hyperexcitability and spontaneous activity, sprouting, synaptic plasticity, changes in intracellular signaling, and modified responses to opioids, along with alterations in the expression and translation of thousands of genes in nociceptors and closely linked cells.

Article

Nathaniel J. Himmel, Atit A. Patel, and Daniel N. Cox

Nociception is a protective mechanism that mediates behavioral responses to a range of potentially damaging stimuli, including noxious temperature, chemicals, and mechanical stimulation. Nociceptive mechanisms are found throughout metazoans. Noxious stimuli are transduced by specialized, high-threshold peripheral nociceptors, which fire action potentials to elicit adaptive behavioral responses. Nociception is essential for survival and provides a mechanism for sensory perception of noxious stimuli, which alerts the organism to potential environmental dangers. When coupled with pain sensation and complex behavioral responses, this mechanism protects the organism from incipient damage. Moreover, acute and chronic pain may manifest as altered nociception in neuropathic pain states. Elucidating the neural bases of nociception is therefore important for identifying and implementing novel strategies for the treatment of neuropathic pain, as well as uncovering the mechanistic bases by which the nervous system integrates information to produce specific behaviors in response to a range of noxious stimuli. Invertebrate organisms, such as Drosophila melanogaster and Caenorhabditis elegans, have emerged as powerful, genetically tractable platforms for exploring these questions. Here, we concisely review the current state of knowledge regarding the cells, molecules, neural circuits, and behaviors associated with invertebrate nociception in the fruit fly and nematode worm.

Article

The traditional view of central nervous system function presumed that learning is the province of the brain. From this perspective, the spinal cord functions primarily as a conduit for incoming/outgoing neural impulses, capable of organizing simple reflexes but incapable of learning. Research has challenged this view, demonstrating that neurons within the spinal cord, isolated from the brain by means of a spinal cut (transection), can encode environmental relations and that this experience can have a lasting effect on function. The exploration of this issue has been informed by work in the learning literature that establishes the behavioral criteria and work within the pain literature that has shed light on the underlying neurobiological mechanisms. Studies have shown that spinal systems can exhibit single stimulus learning (habituation and sensitization) and are sensitive to both stimulus–stimulus (Pavlovian) and response–outcome (instrumental) relations. Regular environmental relations can both bring about an alteration in the performance of a spinally mediated response and impact the capacity to learn in future situations. The latter represents a form of behavioral metaplasticity. At the neurobiological level, neurons within the central gray matter of the spinal cord induce lasting alterations by engaging the NMDA receptor and signal pathways implicated in brain-dependent learning and memory. Of particular clinical importance, uncontrollable/unpredictable pain (nociceptive) input can induce a form of neural over-excitation within the dorsal horn (central sensitization) that impairs adaptive learning. Pain input after a contusion injury can increase tissue loss and undermines long-term recovery.