1-7 of 7 Results

  • Keywords: visual cortex x
Clear all


Thalamocortical Interactions for Sensory Processing  

Jose M. Alonso and Harvey A. Swadlow

The thalamocortical pathway is the main route of sensory information to the cerebral cortex. Vision, touch, hearing, taste, and balance all depend on the integrity of this pathway that connects the thalamic structures receiving sensory input with the cortical areas specialized in each sensory modality. Only the ancient sense of smell is independent of the thalamus, gaining access to cortex through more anterior routes. While the thalamocortical pathway targets different layers of the cerebral cortex, its main stream projects to the middle layers and has axon terminals that are dense, spatially restricted, and highly specific in their connections. The remarkable specificity of these thalamocortical connections allows for a precise reconstruction of the sensory dimensions that need to be most finely sampled, such as spatial acuity in vision and sound frequency in hearing. The thalamic axon terminals also segregate topographically according to their stimulus preferences, providing a simple principle to build cortical sensory maps: neighboring values in sensory space are represented by neighboring points within the cortex. Thalamocortical processing is not static. It is continuously modulated by the brain stem and corticothalamic feedback based on the level of attention and alertness, and during sleep or general anesthesia. When alert, visual thalamic responses become stronger, more reliable, more sustained, more effective at sampling fast changes in the scene, and more linearly related to the stimulus. The high firing rates of the alert state make thalamocortical synapses chronically depressed and excitatory synaptic potentials less dependent on temporal history, improving even further the linear relation between stimulus and response. In turn, when alertness wanes, the thalamus reduces its firing rate, and starts generating spike bursts that drive large postsynaptic responses and keep the cortex responsive to sudden stimulus changes.


Evolution of Neocortex for Sensory Processing  

Jon H. Kaas

The neocortex is a part of the forebrain of mammals that is an innovation of mammal-like “reptilian” synapsid ancestors of early mammals. This neocortex emerged from a small region of dorsal cortex that was present in earlier ancestors and is still found in the forebrain of present-day reptiles. Instead of the thick structure of six layers of cells (five layers) and fibers (one layer) of neocortex of mammals, the dorsal cortex was characterized by a single layer of pyramidal neurons and a scattering of small, largely inhibitory neurons. In reptiles, the dorsal cortex is dominated by visual inputs, with outputs that relate to behavior and memory. The thicker neocortex of six layers in early mammals was already divided into a number of functionally specialized zones called cortical areas that were predominantly sensory in function, while relating to important aspects of motor behavior via subcortical projections. These early sensorimotor areas became modified in various ways as different branches of the mammalian radiation evolved, and neocortex often increased in size and the number of cortical areas, likely by the process of specializations within areas that subdivided areas. At least some areas, perhaps most, subdivided in another way by evolving two or more alternating types of small regions of different functional specializations, now referred to as cortical modules or columns. The specializations within and across cortical areas included those in the sizes of neurons and the extents of their processes, the dendrites and axons, and thus connections with other neurons. As a result, the neocortex of present-day mammals varies greatly within and across phylogenetically related groups (clades), while retaining basic features of organization from early ancestral mammals. In a number of present-day (extant) mammals, brains are relatively small and have little neocortex, with few areas and little structural differentiation, thus resembling early mammals. Other small mammals with little neocortex have specialized some part via selective enlargement and structural modifications to promote certain sensory abilities. Other mammals have a neocortex that is moderately to greatly expanded, with more cortical areas directly related to sensory processing and cognition and memory. The human brain is extreme in this way by having more neocortex in proportion to the rest of the brain, more cortical neurons, and likely more cortical areas.


Stereopsis and Depth Perception  

Andrew J. Parker

Humans and some animals can use their two eyes in cooperation to detect and discriminate parts of the visual scene based on depth. Owing to the horizontal separation of the eyes, each eye obtains a slightly different view of the scene in front of the head. These small differences are processed by the nervous system to generate a sense of binocular depth. As humans, we experience an impression of solidity that is fully three-dimensional; this impression is called stereopsis and is what we appreciate when we watch a 3D movie or look into a stereoscopic viewer. While the basic perceptual phenomena of stereoscopic vision have been known for some time, it is mainly within the last 50 years that we have gained an understanding of how the nervous system delivers this sense of depth. This period of research began with the identification of neuronal signals for binocular depth in the primary visual cortex. Building on that finding, subsequent work has traced the signaling pathways for binocular stereoscopic depth forward into extrastriate cortex and further on into cortical areas concerning with sensorimotor integration. Within these pathways, neurons acquire sensitivity to more complex, higher order aspects of stereoscopic depth. Signals relating to the relative depth of visual features can be identified in the extrastriate cortex, which is a form of selectivity not found in the primary visual cortex. Over the same time period, knowledge of the organization of binocular vision in animals that inhabit a wide diversity of ecological niches has substantially increased. The implications of these findings for developmental and adult plasticity of the visual nervous system and onset of the clinical condition of amblyopia are explored in this article. Amblyopic vision is associated with a cluster of different visual and oculomotor symptoms, but the loss of high-quality stereoscopic depth performance is one of the consistent clinical features. Understanding where and how those losses occur in the visual brain is an important goal of current research, for both scientific and clinical reasons.


Physiology of Color Vision in Primates  

Robert Shapley

Color perception in macaque monkeys and humans depends on the visually evoked activity in three cone photoreceptors and on neuronal post-processing of cone signals. Neuronal post-processing of cone signals occurs in two stages in the pathway from retina to the primary visual cortex. The first stage, in in P (midget) ganglion cells in the retina, is a single-opponent subtractive comparison of the cone signals. The single-opponent computation is then sent to neurons in the Parvocellular layers of the Lateral Geniculate Nucleus (LGN), the main visual nucleus of the thalamus. The second stage of processing of color-related signals is in the primary visual cortex, V1, where multiple comparisons of the single-opponent signals are made. The diversity of neuronal interactions in V1cortex causes the cortical color cells to be subdivided into classes of single-opponent cells and double-opponent cells. Double-opponent cells have visual properties that can be used to explain most of the phenomenology of color perception of surface colors; they respond best to color edges and spatial patterns of color. Single opponent cells, in retina, LGN, and V1, respond to color modulation over their receptive fields and respond best to color modulation over a large area in the visual field.


Visual Attention  

Sabine Kastner and Timothy J. Buschman

Natural scenes are cluttered and contain many objects that cannot all be processed simultaneously. Due to this limited processing capacity, neural mechanisms are needed to selectively enhance the information that is most relevant to one’s current behavior and to filter unwanted information. We refer to these mechanisms as “selective attention.” Attention has been studied extensively at the behavioral level in a variety of paradigms, most notably, Treisman’s visual search and Posner’s paradigm. These paradigms have also provided the basis for studies directed at understanding the neural mechanisms underlying attentional selection, both in the form of neuroimaging studies in humans and intracranial electrophysiology in non-human primates. The selection of behaviorally relevant information is mediated by a large-scale network that includes regions in all major lobes as well as subcortical structures. Attending to a visual stimulus modulates processing across the visual processing hierarchy with stronger effects in higher-order areas. Current research is aimed at characterizing the functions of the different network nodes as well as the dynamics of their functional connectivity.


Visual Shape and Object Perception  

Anitha Pasupathy, Yasmine El-Shamayleh, and Dina V. Popovkina

Humans and other primates rely on vision. Our visual system endows us with the ability to perceive, recognize, and manipulate objects, to avoid obstacles and dangers, to choose foods appropriate for consumption, to read text, and to interpret facial expressions in social interactions. To support these visual functions, the primate brain captures a high-resolution image of the world in the retina and, through a series of intricate operations in the cerebral cortex, transforms this representation into a percept that reflects the physical characteristics of objects and surfaces in the environment. To construct a reliable and informative percept, the visual system discounts the influence of extraneous factors such as illumination, occlusions, and viewing conditions. This perceptual “invariance” can be thought of as the brain’s solution to an inverse inference problem in which the physical factors that gave rise to the retinal image are estimated. While the processes of perception and recognition seem fast and effortless, it is a challenging computational problem that involves a substantial proportion of the primate brain.


Visual Perception in the Human Brain: How the Brain Perceives and Understands Real-World Scenes  

Clemens G. Bartnik and Iris I. A. Groen

How humans perceive and understand real-world scenes is a long-standing question in neuroscience, cognitive psychology, and artificial intelligence. Initially, it was thought that scenes are constructed and represented by their component objects. An alternative view proposed that scene perception starts by extracting global features (e.g., spatial layout) first and individual objects in later stages. A third framework focuses on how the brain not only represents objects and layout but how this information combines to allow determining possibilities for (inter)action that the environment offers us. The discovery of scene-selective regions in the human visual system sparked interest in how scenes are represented in the brain. Experiments using functional magnetic resonance imaging show that multiple types of information are encoded in the scene-selective regions, while electroencephalography and magnetoencephalography measurements demonstrate links between the rapid extraction of different scene features and scene perception behavior. Computational models such as deep neural networks offer further insight by how training networks on different scene recognition tasks results in the computation of diagnostic features that can then be tested for their ability to predict activity in human brains when perceiving a scene. Collectively, these findings suggest that the brain flexibly and rapidly extracts a variety of information from scenes using a distributed network of brain regions.