1-2 of 2 Results  for:

  • Keywords: head direction x
  • Cognitive Neuroscience x
Clear all

Article

Spatial Cognition in Rodents  

Freyja Ólafsdóttir

Wayfinding, like other related spatial cognitive abilities, is a core function of all mobile animals. The past 50 years have a seen a plethora of research devoted to elucidating the neural basis of this function. This research has led to the identification of neuronal cell types—many of which can be found within the hippocampal area and afferent brain regions—that encode different spatial variables and together are thought to provide animals with a so-called “cognitive map.” Moreover, seminal research carried out over the past decade has identified a neural activity event—known as “replay”—that is thought to consolidate newly formed cognitive maps, so to commit them to long-term storage and support planning of goal-directed navigational trajectories in familiar, and perhaps novel, environments. Finally, this hippocampal spatial coding scheme has in recent years been postulated to extend to nonspatial domains, including episodic memory, suggesting it may play a general role in knowledge creation.

Article

Multisensory Integration and the Perception of Self-Motion  

Kathleen E. Cullen

As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world, and of our orientation relative to gravity. Essential to this computation is the information provided by the vestibular system; it detects the rotational velocity and linear acceleration of our heads relative to space, making a fundamental contribution to our perception of self-motion and spatial orientation. Additionally, in everyday life, our perception of self-motion depends on the integration of both vestibular and nonvestibular cues, including visual and proprioceptive information. Furthermore, the integration of motor-related information is also required for perceptual stability, so that the brain can distinguish whether the experienced sensory inflow was a result of active self-motion through the world or if instead self-motion that was externally generated. To date, understanding how the brain encodes and integrates sensory cues with motor signals for the perception of self-motion during natural behaviors remains a major goal in neuroscience. Recent experiments have (i) provided new insights into the neural code used to represent sensory information in vestibular pathways, (ii) established that vestibular pathways are inherently multimodal at the earliest stages of processing, and (iii) revealed that self-motion information processing is adjusted to meet the needs of specific tasks. Our current level of understanding of how the brain integrates sensory information and motor-related signals to encode self-motion and ensure perceptual stability during everyday activities is reviewed.